Разное

Что такое взрыв? Понятие и классификация взрывов.

Взрыв, процесс освобождения большого количества энергии в ограниченном объёме за короткий промежуток времени. В результате В. вещество, заполняющее объём, в котором происходит освобождение энергии, превращается в сильно нагретый газ с очень высоким давлением. Этот газ с большой силой воздействует на окружающую среду, вызывая её движение. В. в твёрдой среде сопровождается её разрушением и дроблением.

Порожденное В. движение, при котором происходит резкое повышение давления, плотности и температуры среды, называют взрывной волной . Фронт взрывной волны распространяется по среде с большой скоростью, в результате чего область, охваченная движением, быстро расширяется. Возникновение взрывной волны является характерным следствием В. в различных средах. Если среда отсутствует, т. е. В. происходит в вакууме, энергия В. переходит в кинетическую энергию разлетающихся во все стороны с большой скоростью продуктов В. Посредством взрывной волны (или разлетающихся продуктов В. в вакууме) В. производит механическое воздействие на объекты, расположенные на различных расстояниях от места В. По мере удаления от места В. механическое воздействие взрывной волны ослабевает. Расстояния, на которых взрывные волны создают одинаковую силу воздействия при В. различной энергии, увеличиваются пропорционально кубическому корню из энергии В. Пропорционально этой же величине увеличивается интервал времени воздействия взрывной волны.

Разнообразные виды В. различаются физической природой источника энергии и способом её освобождения. Типичными примерами В. являются взрывы химических взрывчатых веществ . Взрывчатые вещества обладают способностью к быстрому химическому разложению, при котором энергия межмолекулярных связей выделяется в виде теплоты. Для взрывчатых веществ характерно увеличение скорости химического разложения при повышении температуры. При сравнительно низкой температуре химическое разложение протекает очень медленно, так что взрывчатое вещество в течение длительного времени может не претерпевать заметного изменения в своём состоянии. В этом случае между взрывчатым веществом и окружающей средой устанавливается тепловое равновесие, при котором непрерывно выделяющиеся небольшие количества теплоты отводятся за пределы вещества посредством теплопроводности. Если создаются условия, при которых выделяющаяся теплота не успевает отводиться за пределы взрывчатого вещества, то благодаря повышению температуры развивается самоускоряющийся процесс химического разложения, который называется тепловым В. В связи с тем, что теплота отводится через внешнюю поверхность взрывчатого вещества, а её выделение происходит во всём объёме вещества, тепловое равновесие может быть также нарушено при увеличении общей массы взрывчатого вещества. Это обстоятельство учитывается при хранении взрывчатых веществ.

Возможен иной процесс осуществления В., при котором химическое превращение распространяется по взрывчатому веществу последовательно от слоя к слою в виде волны. Движущийся с большой скоростью передний фронт такой волны представляет собой ударную волну - резкий (скачкообразный) переход вещества из исходного состояния в состояние с очень высокими давлением и температурой. Взрывчатое вещество, сжатое ударной волной, оказывается в состоянии, при котором химическое разложение протекает очень быстро. В результате область, в которой освобождается энергия, оказывается сосредоточенной в тонком слое, прилегающем к поверхности ударной волны. Выделение энергии обеспечивает сохранение высокого давления в ударной волне на постоянном уровне. Процесс химического превращения взрывчатого вещества, который вводится ударной волной и сопровождается быстрым выделением энергии, называется детонацией . Детонационные волны распространяются по взрывчатому веществу с очень большой скоростью, всегда превышающей скорость звука в исходном веществе. Например, скорости волн детонации в твёрдых взрывчатых веществах составляют несколько км/сек . Тонна твёрдого взрывчатого вещества может превратиться таким способом в плотный газ с очень высоким давлением за 10 -4 сек . Давление в образующихся при этом газах достигает нескольких сотен тысяч атмосфер. Действие В. химического взрывчатого вещества может быть усилено в определённом направлении путём применения зарядов взрывчатого вещества специальной формы (см. Кумулятивный эффект ).

К В., связанным с более фундаментальными превращениями веществ, относятся ядерные взрывы . При ядерном В. происходит превращение атомных ядер исходного вещества в ядра др. элементов, которое сопровождается освобождением энергии связи элементарных частиц (протонов и нейтронов), входящих в состав атомного ядра. Ядерный В. основан на способности определённых изотопов тяжёлых элементов урана или плутония к делению, при котором ядра исходного вещества распадаются, образуя ядра более лёгких элементов. При делении всех ядер, содержащихся в 50 г урана или плутония, освобождается такое же количество энергии, как и при детонации 1000 т тринитротолуола. Это сравнение показывает, что ядерное превращение способно произвести В. огромной силы. Деление ядра атома урана или плутония может произойти в результате захвата ядром одного нейтрона. Существенно, что в результате деления возникает несколько новых нейтронов, каждый из которых может вызвать деление др. ядер. В результате число делений будет очень быстро нарастать (по закону геометрической прогрессии). Если принять, что при каждом акте деления число нейтронов, способных вызвать деление др. ядер, удваивается, то менее чем за 90 актов деления образуется такое количество нейтронов, которого достаточно для деления ядер, содержащихся в 100 кг урана или плутония. Время, необходимое для деления этого количества вещества, составит ~10 -6 сек. Такой самоускоряющийся процесс называется цепной реакцией (см. Ядерные цепные реакции ). В действительности не все нейтроны, образующиеся при делении, вызывают деление др. ядер. Если общее количество делящегося вещества мало, то большая часть нейтронов будет выходить за пределы вещества, не вызывая деления. В делящемся веществе всегда имеется небольшое количество свободных нейтронов, однако, цепная реакция развивается лишь в том случае, когда число вновь образующихся нейтронов будет превышать число нейтронов, которые не производят деления. Такие условия создаются, когда масса делящегося вещества превосходит так называемую критическую массу . В. происходит при быстром соединении отдельных частей делящегося вещества (масса каждой части меньше критической) в одно целое с общей массой, превосходящей критическую массу, или при сильном сжатии, уменьшающем площадь поверхности вещества и тем самым уменьшающем количество выходящих наружу нейтронов. Для создания таких условий обычно используют В. химического взрывчатого вещества.

Существует др. тип ядерной реакции - реакция синтеза лёгких ядер, сопровождающаяся выделением большого количества энергии. Силы отталкивания одноимённых электрических зарядов (все ядра имеют положительный электрический заряд) препятствуют протеканию реакции синтеза, поэтому для эффективного ядерного превращения такого типа ядра должны обладать высокой энергией. Такие условия могут быть созданы нагреванием веществ до очень высокой температуры. В связи с этим процесс синтеза, протекающий при высокой температуре, называют термоядерной реакцией . При синтезе ядер дейтерия (изотопа водорода 2 H) освобождается почти в 3 раза больше энергии, чем при делении такой же массы урана. Необходимая для синтеза температура достигается при ядерном В. урана или плутония. Таким образом, если поместить в одном и том же устройстве делящееся вещество и изотопы водорода, то может быть осуществлена реакция синтеза, результатом которой будет В. огромной силы. Помимо мощной взрывной волны, ядерный В. сопровождается интенсивным испусканием света и проникающей радиации (см. Поражающие факторы ядерного взрыва ).

В описанных выше типах В. освобожденная энергия содержалась первоначально в виде энергии молекулярной или ядерной связи в веществе. Существуют В., в которых выделяющаяся энергия подводится от внешнего источника. Примером такого В. может служить мощный электрический разряд в какой-либо среде. Электрическая энергия в разрядном промежутке выделяется в виде теплоты, превращая среду в ионизованный газ с высокими давлением и температурой. Аналогичное явление происходит при протекании мощного электрического тока по металлическому проводнику, если сила тока оказывается достаточной для быстрого превращения металлического проводника в пар. Явление В. возникает также при воздействии на вещество сфокусированного лазерного излучения (см. Лазер ). Как один из видов В. можно рассматривать процесс быстрого освобождения энергии, происходящий в результате внезапного разрушения оболочки, удерживавшей газ с высоким давлением (например, В. баллона со сжатым газом). В. может произойти при столкновении твёрдых тел, движущихся навстречу друг другу с большой скоростью. При столкновении кинетическая энергия тел переходит в теплоту в результате распространения по веществу мощной ударной волны, возникающей в момент столкновения. Скорости относительного сближения твёрдых тел, необходимые для того, чтобы в результате столкновения вещество полностью превратилось в пар, измеряются десятками км/сек , развивающиеся при этом давления составляют миллионы атмосфер.

В природе происходит много различных явлений, которые сопровождаются В. Мощные электрические разряды в атмосфере во время грозы (молнии), внезапное извержение вулканов , падение на поверхность Земли крупных метеоритов представляют собой примеры различных видов В. В результате падения Тунгусского метеорита (1907) произошёл В., эквивалентный по количеству выделившейся энергии В. ~10 7 т тринитротолуола. По-видимому, ещё большее количество энергии освободилось в результате В. вулкана Кракатау (1883).

Огромными по масштабу В. являются хромосферные вспышки на Солнце. Выделяющаяся при таких вспышках энергия достигает ~10 17 дж (для сравнения укажем, что при В. 10 6 т тринитротолуола выделилась бы энергия, равная 4,2·10 15 дж ).

Характер гигантских В., происходящих в космическом пространстве, имеют вспышки новых звёзд . При вспышках, по-видимому в течение нескольких часов, выделяется энергия 10 38 -10 39 дж . Такая энергия излучается Солнцем за 10-100 тыс. лет. Наконец, ещё более гигантские В., выходящие далеко за пределы человеческого воображения, представляют собой вспышки сверхновых звёзд , при которых освобождающаяся энергия достигает ~ 10 43 дж , и В. в ядрах ряда галактик, оценка энергии которых приводит к ~ 10 50 дж .

В. химических взрывчатых веществ применяют как одно из основных средств разрушения. Огромной разрушающей способностью обладают ядерные взрывы. В. одной ядерной бомбы может быть эквивалентен по энергии В. десятков млн. т химического взрывчатого вещества.

В. нашли широкое мирное применение в научных исследованиях и в промышленности. В. позволили достигнуть значительного прогресса в изучении свойств газов, жидкостей и твёрдых тел при высоких давлениях и температурах (см. Давление высокое ). Исследование В. играет важную роль в развитии физики неравновесных процессов, изучающей явления переноса массы, импульса и энергии в различных средах, механизмы фазовых переходов вещества, кинетику химических реакций и т.п. Под воздействием В. могут быть достигнуты такие состояния веществ, которые оказываются недоступными при др. способах исследования. Мощное сжатие канала электрического разряда посредством В. химического взрывчатого вещества даёт возможность получать в течение короткого промежутка времени магнитные поля огромной напряжённости [до 1,1 Га/м (до 14 млн. э ), см.(смотри) Магнитное поле ]. Интенсивное испускание света при В. химического взрывчатого вещества в газе может использоваться для возбуждения оптического квантового генератора (лазера). Под действием высокого давления, которое создаётся при детонации взрывчатого вещества, осуществляются взрывное штампование , взрывная сварка и взрывное упрочнение металлов .

Экспериментальное изучение В. состоит в измерении скоростей распространения взрывных волн и скоростей перемещения вещества, измерении быстро изменяющегося давления, распределений плотности, интенсивности и спектрального состава электромагнитного и др. видов излучения, испускаемого при В. Эти данные позволяют получить сведения о скорости протекания различных процессов, сопровождающих В., и определить общее количество освобождающейся энергии. Давление и плотность вещества в ударной волне связаны определёнными соотношениями со скоростью движения ударной волны и скоростью перемещения вещества. Это обстоятельство позволяет, например, на основании измерений скоростей вычислить давления и плотности в тех случаях, когда их непосредственное измерение оказывается по какой-либо причине недоступным. Для измерений основных параметров, характеризующих состояние и скорость перемещения среды, применяются различные датчики, преобразующие определенный вид воздействия в электрический сигнал, который записывается при помощи осциллографа или др. регистрирующего прибора. Современная электронная аппаратура позволяет регистрировать явления, происходящие в течение интервалов времени ~ 10 -11 сек . Измерения интенсивности и спектрального состава светового излучения при помощи специальных фотоэлементов и спектрографов служат источником информации о температуре вещества. Широкое применение для регистрации явлений, сопровождающих В., имеет скоростная фотосъёмка, которая может производиться со скоростью, достигающей 10 9 кадров в 1 сек .

В лабораторных исследованиях ударных волн в газах часто используется специальное устройство - ударная труба (см. Аэродинамическая труба ). Ударная волна в такой трубе создаётся в результате быстрого разрушения мембраны, разделяющей газ с высоким и низким давлением (такой процесс можно рассматривать как наиболее простой вид В.). При исследовании волн в ударных трубах эффективно применяются интерферометры и полутеневые оптические установки, действие которых основано на изменении показателя преломления газа вследствие изменения его плотности.

Взрывные волны, распространяющиеся на большие расстояния от места их возникновения, служат источником информации о строении атмосферы и внутренних слоёв Земли. Волны на очень больших расстояниях от места В. регистрируются высокочувствительной аппаратурой, позволяющей фиксировать колебания давления в воздухе до 10 -6 атмосферы (0,1 н/м 2) или перемещения почвы ~ 10 -9 м .

Лит.: Садовский М. А., Механическое действие воздушных ударных волн взрыва по данным экспериментальных исследований, в сб.(сборник): Физика взрыва, № 1, М., 1952; Баум Ф. А., Станюкович К. П. и Шехтер Б. И., Физика взрыва, М., 1959; Андреев К. К. и Беляев А. Ф., Теория взрывчатых веществ, М., 1960: Покровский Г. И., Взрыв, М., 1964; Ляхов Г. М., Основы динамики взрыва в грунтах и жидких средах, М., 1964; Докучаев М. М., Родионов В. Н., Ромашов А. Н., Взрыв на выброс, М., 1963: Коул Р., Подводные взрывы, пер.(перевод) с англ.(английский), М., 1950; Подземные ядерные взрывы, пер.(перевод) с англ.(английский), М., 1962; Действие ядерного оружия, пер.(перевод) с англ.(английский), М., 1960; Горбацкий В. Г., Космические взрывы, М., 1967; Дубовик А. С., Фотографическая регистрация быстропротекающих процессов, М., 1964.

Материал из Википедии - свободной энциклопедии

Взрыв - быстропротекающий физический или физико-химический процесс, проходящий со значительным выделением энергии в небольшом объёме за короткий промежуток времени и приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду вследствие высокоскоростного расширения продуктов взрыва . Взрыв в твёрдой среде вызывает разрушение и дробление.

В физике и технике термин "взрыв" используется в разных смыслах: в физике необходимым условием для взрыва является наличие ударной волны , в технике для отнесения процесса к взрыву наличие ударной волны не обязательно, но существует угроза разрушения оборудования и зданий. В технике в значительной части термин "взрыв" связан с процессами, происходящими внутри замкнутых сосудов и помещений, которые при чрезмерном повышении давления могут разрушится и при отсутствии ударных волн. В технике для внешних взрывов без образования ударных волн рассматриваются волны сжатия и воздействие огненного шара. :9 При отсутствии ударных волн, признаком определяющим взрыв является звуковой эффект волны давления. :104 В технике дополнительно к взрывам и детонации также выделяют хлопки. :5

В юридической литературе широко используется термин "криминальный взрыв" - взрыв, причиняющий материальный ущерб, вред здоровью и жизни людей, интересам общества, а также взрыв, который может вызвать смерть человека.

Действие взрыва

Последствия взрыва паровоза, 1911 год

Продукты взрыва обычно являются газами с высокими давлением и температурой, которые, расширяясь, способны совершать механическую работу и вызывать разрушения других объектов. В продуктах взрыва помимо газов могут содержаться и твёрдые высокодисперсные частицы. Разрушительное действие взрыва вызвано высоким давлением и образованием ударной волны . Действие взрыва может быть усилено кумулятивными эффектами .

Действие ударной волны на предметы зависит от их характеристик. Разрушение капитальных строений зависит от импульса взрыва. Например, при действии ударной волны на кирпичную стену она начнет наклонятся. За время действия ударной волны наклон будет незначительным. Однако, если и после действия ударной волны стена будет наклонятся по инерции, то она рухнет. Если предмет жесткий, прочно укреплен и имеет небольшую массу, то он успеет изменить свою форму под действием импульса взрыва и будет сопротивляться действию ударной волны, как силе, приложенной постоянно. В этом случае разрушение будет зависеть не от импульса, а от давления, вызываемого ударной волной. :37

Источники энергии

По происхождению выделившейся энергии различают следующие типы взрывов:

  • Химические взрывы взрывчатых веществ - за счёт энергии химических связей исходных веществ.
  • Взрывы ёмкостей под давлением (газовые баллоны , паровые котлы , трубопроводы) - за счет энергии сжатого газа или перегретой жидкости. К ним, в частности, относятся:
    • Взрывы при сбросе давления в перегретых жидкостях.
    • Взрывы при смешивании двух жидкостей, температура одной из которых намного превышает температуру кипения другой.
  • Ядерные взрывы - за счет энергии, высвобождающейся в ядерных реакциях.
  • Электрические взрывы (например, при грозе).
  • Вулканические взрывы.
  • Взрывы при столкновении космических тел, например, при падении метеоритов на поверхность планеты.
  • Взрывы, вызванные гравитационным коллапсом (взрывы сверхновых звёзд и др.).

Химические взрывы

Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (медленного горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии , как при медленном горении. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы горения в детонацию и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

Химический взрыв неконденсированных веществ от горения отличается тем, что горение происходит, когда горючая смесь образуется в процессе самого горения. :36

Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры - объёмный взрыв . Существуют очень немногие примеры химических взрывов, не имеющих своей причиной окисление/восстановление, например реакция мелкодисперсного оксида фосфора(V) с водой, но её можно рассматривать и как

Взрыв - быстропротекающий физический или физико-химический процесс, проходящий со значительным выделением энергии в небольшом объёме за короткий промежуток времени и приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду вследствие высокоскоростного расширения продуктов взрыва . Взрыв в твёрдой среде вызывает разрушение и дробление.

Источники энергии [ | ]

Взрывное превращение - быстрый самостоятельно распространяющийся процесс с выделением энергии и образованием сильно сжатых газов, способных производить работу, возникает из-за химических и ядерных реакций. В результате взрывного превращения в окружающей среде возникает волна сжатия. Такие волны также сопровождают взрывы, не сопровождающиеся взрывным превращением - физические взрывы сосудов под давлением , наполненных негорючими газами, паром или многофазными сжимаемыми системами (пыль, пена). Физико-химический взрыв паров вскипающей жидкости (BLEVE) происходит в результате внешнего подогрева сосуда, наполненного горючей легкокипящей жидкостью. При разрыве емкости и последующем воспламенении паров кипящей жидкости происходит образование огненного шара. :35 Также, в зависимости от источников энергии, существуют электрические, вулканические взрывы, взрывы при столкновении космических тел (например, при падении метеоритов на поверхность планеты), взрывы, вызванные гравитационным коллапсом (взрывы сверхновых звёзд и др.).

Точечными взрывами являются взрывы вещества, занимающего малый объем относительно зоны воздействия, например - заряд взрывчатого вещества. Объемным взрывом является взрыв газо-, паро-, пылевоздушного облака, занимающего значительный объем зоны воздействия. При взрыве облака возникает огненный шар. :168

Техника [ | ]

Последствия взрыва паровоза, 1911 год

В физике и технике термин "взрыв" используется в разных смыслах: в физике взрыва необходимым условием является наличие ударной волны , в технике для отнесения процесса к взрыву наличие ударной волны не обязательно, при наличии угрозы разрушения оборудования и зданий. В технике в значительной части термин "взрыв" связан с процессами, происходящими внутри замкнутых сосудов и помещений, которые при чрезмерном повышении давления могут разрушится и при отсутствии ударных волн. В технике для внешних взрывов без образования ударных волн рассматриваются волны сжатия и воздействие огненного шара. :9 При отсутствии ударных волн, признаком определяющим взрыв является звуковой эффект волны давления. :104 В технике дополнительно к взрывам и детонации также выделяют хлопки. :5

В технике для химических взрывов не сопровождающихся возникновением ударных волн используется термин "взрывное горение". От нормального послойного горения этот процесс отличается нестационарностью и на несколько порядков большой скоростью распространения пламени. В замкнутом объеме взрывное горение вызывает волны сжатия. Такое горение характерно при взрывах дымного пороха , пиротехнических составов, промышленной пыли. Взрывное горение при определенных условиях может перейти в детонацию.

При взрывах с использованием химических взрывчатых веществ в грунтах и горных породах ударные волны практически никогда не возникают. Мощные ударные волны образуются только при подземных ядерных взрывах на не очень больших расстояниях от заряда.

Право [ | ]

В юридической литературе широко используется термин "криминальный взрыв" - взрыв, причиняющий материальный ущерб, вред здоровью и жизни людей, интересам общества, а также взрыв, который может вызвать смерть человека. К криминальным взрывам относятся как взрывы в целях совершения умышленного преступления, так и нарушения специальных правил безопасности , которые привели к взрывам. Для определения необходимости выполнения специальных правил в области взрывобезопасности в промышленности выделяются взрывоопасные зоны и взрывоопасные объекты .

Взрыв горной массы в карьере

Действие взрыва [ | ]

Механическое воздействие взрыва связано с работой, которая совершается при расширении газов. Воздействие условно делится на бризантные (местные) и фугасные (общие) формы. Бризантное действие проявляется непосредственно в окрестностях заряда (в твердой среде) или вблизи поверхности твердого тела, фугасное - на расстояниях намного больше размера заряда. Для бризантного действия характерно сильное деформирование и дробление среды, а его общий фугасный эффект определяется импульсом, т.е. начальным давлением в полости взрыва и её размерами. Фугасное действие зависит только от энергии заряда. Форма заряда взрывчатого вещества и его детонационные характеристики существенно влияют лишь на бризантное действие взрыва. Бризантное действие взрыва может быть усилено кумулятивными эффектами .

Действие ударной волны на предметы зависит от их характеристик. Разрушение капитальных строений зависит от импульса взрыва. Например, при действии ударной волны на кирпичную стену она начнет наклонятся. За время действия ударной волны наклон будет незначительным. Однако, если и после действия ударной волны стена будет наклонятся по инерции, то она рухнет. Если предмет жесткий, прочно укреплен и имеет небольшую массу, то он успеет изменить свою форму под действием импульса взрыва и будет сопротивляться действию ударной волны, как силе, приложенной постоянно. В этом случае разрушение будет зависеть не от импульса, а от давления, вызываемого ударной волной. :37

Химические взрывы [ | ]

Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (медленного горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии , как при медленном горении. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы горения в детонацию и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

Химический взрыв неконденсированных веществ от горения отличается тем, что горение происходит, когда горючая смесь образуется в процессе самого горения. :36

Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры - объёмный взрыв . Существуют очень немногие примеры химических взрывов, не имеющих своей причиной окисление/восстановление, например реакция мелкодисперсного оксида фосфора(V) с водой, но её можно рассматривать и как паровой взрыв .

Индивидуальные взрывчатые вещества , как правило, содержат кислород в составе своих собственных молекул. Это метастабильные вещества, которые способны храниться более или менее долгое время при нормальных условиях. Однако при инициировании взрыва веществу передаётся достаточная энергия для самопроизвольного распространения волны горения или детонации, захватывающей всю массу вещества. Подобными свойствами обладают нитроглицерин , тринитротолуол и другие вещества. Бездымные пороха и чёрный порох , который состоит из механической смеси угля, серы и селитры , в обычных условиях не способны к детонации, но их традиционно также относят к взрывчатым веществам.

Ядерные взрывы [ | ]

Ядерный взрыв - это неуправляемый процесс высвобождения большого количества

Взрывается в течение 0,0001 секунды, выделяя 1.470 калорий тепла и ок. 700 л газа. См. Взрывчатые вещества .

В статье воспроизведен текст из Малой советской энциклопедии .

Взрыв , процесс освобождения большого количества энергии в ограниченном объёме за короткий промежуток времени. В результате В. вещество, заполняющее объём, в котором происходит освобождение энергии, превращается в сильно нагретый газ с очень высоким давлением. Этот газ с большой силой воздействует на окружающую среду, вызывая её движение. Взрыв в твёрдой среде сопровождается её разрушением и дроблением.

Порожденное взрывом движение, при котором происходит резкое повышение давления, плотности и температуры среды, называют взрывной волной . Фронт взрывной волны распространяется по среде с большой скоростью, в результате чего область, охваченная движением, быстро расширяется. Возникновение взрывной волны является характерным следствием В. в различных средах. Если среда отсутствует, то есть взрыв происходит в вакууме , энергия В. переходит в кинетическую энергию разлетающихся во все стороны с большой скоростью продуктов В. Посредством взрывной волны (или разлетающихся продуктов В. в вакууме) В. производит механическое воздействие на объекты, расположенные на различных расстояниях от места В. По мере удаления от места взрыва механическое воздействие взрывной волны ослабевает. Расстояния, на которых взрывные волны создают одинаковую силу воздействия при В. различной энергии, увеличиваются пропорционально кубическому корню из энергии В. Пропорционально этой же величине увеличивается интервал времени воздействия взрывной волны.

Разнообразные виды взрывов различаются физической природой источника энергии и способом её освобождения. Типичными примерами В. являются взрывы химических взрывчатых веществ. Взрывчатые вещества обладают способностью к быстрому химическому разложению, при котором энергия межмолекулярных связей выделяется в виде теплоты . Для взрывчатых веществ характерно увеличение скорости химического разложения при повышении температуры. При сравнительно низкой температуре химическое разложение протекает очень медленно, так что взрывчатое вещество в течение длительного времени может не претерпевать заметного изменения в своём состоянии. В этом случае между взрывчатым веществом и окружающей средой устанавливается тепловое равновесие, при котором непрерывно выделяющиеся небольшие количества теплоты отводятся за пределы вещества посредством теплопроводности. Если создаются условия, при которых выделяющаяся теплота не успевает отводиться за пределы взрывчатого вещества, то благодаря повышению температуры развивается самоускоряющийся процесс химического разложения, который называется тепловым В. В связи с тем, что теплота отводится через внешнюю поверхность взрывчатого вещества, а её выделение происходит во всём объёме вещества, тепловое равновесие может быть также нарушено при увеличении общей массы взрывчатого вещества. Это обстоятельство учитывается при хранении взрывчатых веществ.

Возможен иной процесс осуществления взрыва, при котором химическое превращение распространяется по взрывчатому веществу последовательно от слоя к слою в виде волны. Движущийся с большой скоростью передний фронт такой волны представляет собой ударную волну - резкий (скачкообразный) переход вещества из исходного состояния в состояние с очень высокими давлением и температурой. Взрывчатое вещество, сжатое ударной волной, оказывается в состоянии, при котором химическое разложение протекает очень быстро. В результате область, в которой освобождается энергия, оказывается сосредоточенной в тонком слое, прилегающем к поверхности ударной волны. Выделение энергии обеспечивает сохранение высокого давления в ударной волне на постоянном уровне. Процесс химического превращения взрывчатого вещества, который вводится ударной волной и сопровождается быстрым выделением энергии, называется детонацией . Детонационные волны распространяются по взрывчатому веществу с очень большой скоростью, всегда превышающей скорость звука в исходном веществе. Например, скорости волн детонации в твёрдых взрывчатых веществах составляют несколько км/сек. Тонна твёрдого взрывчатого вещества может превратиться таким способом в плотный газ с очень высоким давлением за 10 -4 сек. Давление в образующихся при этом газах достигает нескольких сотен тысяч атмосфер . Действие взрыва химического взрывчатого вещества может быть усилено в определённом направлении путём применения зарядов взрывчатого вещества специальной формы (см. Кумулятивный эффект ).

К взрывам, связанным с более фундаментальными превращениями веществ, относятся ядерные взрывы . При ядерном взрыве происходит превращение атомных ядер исходного вещества в ядра др. элементов, которое сопровождается освобождением энергии связи элементарных частиц (протонов и нейтронов), входящих в состав атомного ядра. Ядерный В. основан на способности определённых изотопов тяжёлых элементов урана или плутония к делению, при котором ядра исходного вещества распадаются, образуя ядра более лёгких элементов. При делении всех ядер, содержащихся в 50 г урана или плутония, освобождается такое же количество энергии, как и при детонации 1000 т тринитротолуола. Это сравнение показывает, что ядерное превращение способно произвести В. огромной силы. Деление ядра атома урана или плутония может произойти в результате захвата ядром одного нейтрона. Существенно, что в результате деления возникает несколько новых нейтронов, каждый из которых может вызвать деление др. ядер. В результате число делений будет очень быстро нарастать (по закону геометрической прогрессии). Если принять, что при каждом акте деления число нейтронов, способных вызвать деление др. ядер, удваивается, то менее чем за 90 актов деления образуется такое количество нейтронов, которого достаточно для деления ядер, содержащихся в 100 кг урана или плутония. Время, необходимое для деления этого количества вещества, составит ~10 -6 сек. Такой самоускоряющийся процесс называется цепной реакцией (см. Ядерные цепные реакции ). В действительности не все нейтроны, образующиеся при делении, вызывают деление др. ядер. Если общее количество делящегося вещества мало, то большая часть нейтронов будет выходить за пределы вещества, не вызывая деления. В делящемся веществе всегда имеется небольшое количество свободных нейтронов, однако, цепная реакция развивается лишь в том случае, когда число вновь образующихся нейтронов будет превышать число нейтронов, которые не производят деления. Такие условия создаются, когда масса делящегося вещества превосходит так называемую критическую массу . В. происходит при быстром соединении отдельных частей делящегося вещества (масса каждой части меньше критической) в одно целое с общей массой, превосходящей критическую массу, или при сильном сжатии, уменьшающем площадь поверхности вещества и тем самым уменьшающем количество выходящих наружу нейтронов. Для создания таких условий обычно используют В. химического взрывчатого вещества.

Существует др. тип ядерной реакции - реакция синтеза лёгких ядер, сопровождающаяся выделением большого количества энергии. Силы отталкивания одноимённых электрических зарядов (все ядра имеют положительный электрический заряд) препятствуют протеканию реакции синтеза, поэтому для эффективного ядерного превращения такого типа ядра должны обладать высокой энергией. Такие условия могут быть созданы нагреванием веществ до очень высокой температуры. В связи с этим процесс синтеза, протекающий при высокой температуре, называют термоядерной реакцией . При синтезе ядер дейтерия (изотопа водорода ²H) освобождается почти в 3 раза больше энергии, чем при делении такой же массы урана. Необходимая для синтеза температура достигается при ядерном взрыве урана или плутония. Таким образом, если поместить в одном и том же устройстве делящееся вещество и изотопы водорода, то может быть осуществлена реакция синтеза, результатом которой будет В. огромной силы. Помимо мощной взрывной волны, ядерный взрыв сопровождается интенсивным испусканием света и проникающей радиации (см. Поражающие факторы ядерного взрыва ).

В описанных выше типах взрыва освобожденная энергия содержалась первоначально в виде энергии молекулярной или ядерной связи в веществе. Существуют В., в которых выделяющаяся энергия подводится от внешнего источника. Примером такого В. может служить мощный электрический разряд в какой-либо среде. Электрическая энергия в разрядном промежутке выделяется в виде теплоты, превращая среду в ионизованный газ с высокими давлением и температурой. Аналогичное явление происходит при протекании мощного электрического тока по металлическому проводнику, если сила тока оказывается достаточной для быстрого превращения металлического проводника в пар. Явление В. возникает также при воздействии на вещество сфокусированного лазерного излучения (см. Лазер ). Как один из видов взрыва можно рассматривать процесс быстрого освобождения энергии, происходящий в результате внезапного разрушения оболочки, удерживавшей газ с высоким давлением (например, взрыв баллона со сжатым газом). В. может произойти при столкновении твёрдых тел, движущихся навстречу друг другу с большой скоростью. При столкновении кинетическая энергия тел переходит в теплоту в результате распространения по веществу мощной ударной волны, возникающей в момент столкновения. Скорости относительного сближения твёрдых тел, необходимые для того, чтобы в результате столкновения вещество полностью превратилось в пар, измеряются десятками км/сек, развивающиеся при этом давления составляют миллионы атмосфер.

В природе происходит много различных явлений, которые сопровождаются В. Мощные электрические разряды в атмосфере во время грозы (молнии), внезапное извержение вулканов , падение на поверхность Земли крупных метеоритов представляют собой примеры различных видов В. В результате падения Тунгусского метеорита () произошёл В., эквивалентный по количеству выделившейся энергии В. ~10 7 т тринитротолуола. По-видимому, ещё большее количество энергии освободилось в результате взрыва вулкана Кракатау ().

Огромными по масштабу взрывами являются хромосферные вспышки на Солнце. Выделяющаяся при таких вспышках энергия достигает ~10 17 дж (для сравнения укажем, что при В. 10 6 т тринитротолуола выделилась бы энергия, равная 4,2·10 15 дж).

Характер гигантских взрывов, происходящих в космическом пространстве, имеют вспышки новых звёзд . При вспышках, по-видимому в течение нескольких часов, выделяется энергия 10 38 -10 39 дж. Такая энергия излучается Солнцем за 10-100 тыс. лет. Наконец, ещё более гигантские В., выходящие далеко за пределы человеческого воображения, представляют собой вспышки сверхновых звёзд , при которых освобождающаяся энергия достигает ~ 10 43 дж, и В. в ядрах ряда галактик, оценка энергии которых приводит к ~ 10 50 дж.

Взрывы химических взрывчатых веществ применяют как одно из основных средств разрушения. Огромной разрушающей способностью обладают ядерные взрывы. Взрыв одной ядерной бомбы может быть эквивалентен по энергии В. десятков млн. т химического взрывчатого вещества.

Взрывы нашли широкое мирное применение в научных исследованиях и в промышленности. В. позволили достигнуть значительного прогресса в изучении свойств газов, жидкостей и твёрдых тел при высоких давлениях и температурах (см. Давление высокое ). Исследование взрывов играет важную роль в развитии физики неравновесных процессов, изучающей явления переноса массы, импульса и энергии в различных средах, механизмы фазовых переходов вещества, кинетику химических реакций и т. п. Под воздействием В. могут быть достигнуты такие состояния веществ, которые оказываются недоступными при др. способах исследования. Мощное сжатие канала электрического разряда посредством В. химического взрывчатого вещества даёт возможность получать в течение короткого промежутка времени магнитные поля огромной напряжённости [до 1,1 Га/м (до 14 млн э), см. Магнитное поле . Интенсивное испускание света при В. химического взрывчатого вещества в газе может использоваться для возбуждения оптического квантового генератора (лазера). Под действием высокого давления, которое создаётся при детонации взрывчатого вещества, осуществляются взрывное штампование , взрывная сварка и взрывное упрочнение металлов .

Экспериментальное изучение В. состоит в измерении скоростей распространения взрывных волн и скоростей перемещения вещества, измерении быстро изменяющегося давления, распределений плотности, интенсивности и спектрального состава электромагнитного и др. видов излучения, испускаемого при В. Эти данные позволяют получить сведения о скорости протекания различных процессов, сопровождающих В., и определить общее количество освобождающейся энергии. Давление и плотность вещества в ударной волне связаны определёнными соотношениями со скоростью движения ударной волны и скоростью перемещения вещества. Это обстоятельство позволяет, например, на основании измерений скоростей вычислить давления и плотности в тех случаях, когда их непосредственное измерение оказывается по какой-либо причине недоступным. Для измерений основных параметров, характеризующих состояние и скорость перемещения среды, применяются различные датчики, преобразующие определенный вид воздействия в электрический сигнал, который записывается при помощи осциллографа или др. регистрирующего прибора. Современная электронная аппаратура позволяет регистрировать явления, происходящие в течение интервалов времени ~ 10 -11 сек. Измерения интенсивности и спектрального состава светового излучения при помощи специальных фотоэлементов и спектрографов служат источником информации о температуре вещества. Широкое применение для регистрации явлений, сопровождающих В., имеет скоростная фотосъёмка, которая может производиться со скоростью, достигающей 10 9 кадров в 1 сек.

В лабораторных исследованиях ударных волн в газах часто используется специальное устройство - ударная труба (см. Аэродинамическая труба ). Ударная волна в такой трубе создаётся в результате быстрого разрушения мембраны, разделяющей газ с высоким и низким давлением (такой процесс можно рассматривать как наиболее простой вид В.). При исследовании волн в ударных трубах эффективно применяются интерферометры и полутеневые оптические установки, действие которых основано на изменении показателя преломления газа вследствие изменения его плотности.

Взрывные волны, распространяющиеся на большие расстояния от места их возникновения, служат источником информации о строении атмосферы и внутренних слоёв Земли. Волны на очень больших расстояниях от места В. регистрируются высокочувствительной аппаратурой, позволяющей фиксировать колебания давления в воздухе до 10 -6 атмосферы (0,1 н/м²) или перемещения почвы ~ 10 -9 м.

Литература :

  • Садовский М. А., Механическое действие воздушных ударных волн взрыва по данным экспериментальных исследований, в сб.: Физика взрыва, № 1, М., 1952;
  • Баум Ф. А., Станюкович К. П. и Шехтер Б. И., Физика взрыва, М., 1959;
  • Андреев К. К. и Беляев А. Ф., Теория взрывчатых веществ, М., 1960:
  • Покровский Г. И., Взрыв, М., 1964;
  • Ляхов Г. М., Основы динамики взрыва в грунтах и жидких средах, М., 1964;
  • Докучаев М. М., Родионов В. Н., Ромашов А. Н., Взрыв на выброс, М., 1963:
  • Коул Р., Подводные взрывы, пер. с англ., М., 1950;
  • Подземные ядерные взрывы, пер. с англ., М., 1962;
  • Действие ядерного оружия, пер. с англ., М., 1960;
  • Горбацкий В. Г., Космические взрывы, М., 1967;
  • Дубовик А. С., Фотографическая регистрация быстропротекающих процессов, М., 1964.

К. Е. Губкин.

Эта статья или раздел использует текст

Взрыв – это весьма быстрое изменение химического (физического) состояния взрывчатого вещества, сопровождающееся выделением большого количества тепла и образованием большого количества газов, создающих ударную волну, способную своим давлением вызывать разрушения.

Взрывчатыми веществами (ВВ) – особые группы веществ, способные к взрывчатым превращениям в результате внешних воздействий.
Различают взрывы :

1.Физический – высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (сжиженного пара). Сила взрыва зависит от внутреннего давления. Возникающие разрушения могут вызываться ударной волной от расширяющегося газа или осколками разорвавшегося резервуара (Пример: разрушение резервуаров со сжатым газом, паровых котлов, а также мощные электрические разряды)

2.Химический – взрыв, вызванный быстрой экзотермической химической реакцией, протекающей с образованием сильно сжатых газообразных или парообразных продуктов. Примером может служить взрыв дымного пороха, при котором происходит быстрая химическая реакция между селитрой, углем и серой, сопровождающаяся выделением, значительного количества теплоты. Образовавшиеся газообразные продукты, нагретые за счет теплоты реакции до высокой температуры, обладают высоким давлением и, расширяясь, производят механическую работу.

3.Атомные взрывы . Быстропротекающие ядерные и ли термоядерные реакции (реакции деления или соединения атомных ядер), при которых освобождается очень большое количество теплоты. Продукты реакции, оболочка атомной или водородной бомбы и некоторое количество окружающей бомбу среды мгновенно превращается в нагретые до очень высокой температуры газы, обладающие соответственно высоким давлением. Явление сопровождается колоссальной механической работой.

Химические взрывы подразделяются на конденсированные и объемные взрывы.

А) Под конденсированными взрывчатыми веществами понимаются химические соединения и смеси, находящиеся в твердом или жидком состоянии, которые под влиянием определенных внешних условий способны к быстрому самораспространяющемуся химическому превращению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, производят механическую работу. Такое химическое превращение ВВ принято называть взрывчатым превращением.

Возбуждением взрывчатого превращения ВВ называется инициированием. Для возбуждения взрывчатого превращения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:
- механическим (удар, накол, трение);
- тепловым (искра, пламя, нагревание);
- электрическим (нагревание, искровой разряд);
- химическим (реакции с интенсивным выделением тепла);
- взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

Конденсированные ВВ подразделяются на группы :

Характеристика. Примеры вещества.

Чрезвычайно опасные вещества

Нестабильны. Взрываются даже в самых малых количествах. Трихлорид азота; некоторые органические перекисные соединения; ацетиленид меди, образующийся при контакте ацетилена с медью
или медесодержащим сплавом

Первичные ВВ

Менее опасные вещества. Инициирующие соединения. Обладают очень высокой чувствительность к удару и тепловому воздействию. Используются в основном в капсулях-детонаторах для возбуждения детонации в зарядах ВВ. Азид свинца, гремучая ртуть.

Вторичные ВВ (бризантные ВВ)

Возбуждение детонации в них происходит при воздействии сильной ударной волны. Последняя может создаваться в процессе их горения или с помощью детонатора. Как правило, ВВ этой группы сравнительно безопасны в обращении и могут храниться в течение длительных промежутков времени. Динамиты, тротил, гексоген, октоген, централит.

Метательные ВВ, пороха

Чувствительность к удару очень мала, относительно медленно горят.
Баллиститные пороха – смесь нитроцеллюлозы, нитроглицерина и других технологических добавок.
Загораются от пламени, искры или нагрева. На открытом воздухе быстро горят. В замкнутом сосуде взрываются. На месте взрыва черного пороха, содержащего азотнокислый калий, серу и древесный уголь в отношениях 75:15:10, остается остаток, содержащий углерод.

Классификацию взрывов можно произвести и по типам химических реакций:

  1. Реакция разложения – процесс разложения, который дают газообразные продукты
  2. Окислительно-восстановительная реакция – реакция, в которой воздух или кислород реагирует с восстановителем
  3. Реакция смесей – пример такой смеси – порох.

Б) Объемные взрывы бывают двух типов:

  • Взрывы облака пыли (пылевые взрывы) рассматриваются как взрывы пыли в штольнях шахт и в оборудовании или внутри здания. Такие взрывоопасные смеси возникают при дроблении, просеве, насыпке, перемещении пылящих материалов. Взрывоопасные пылевые смеси имеют нижний концентрационный предел взрываемости (НКПВ) , определяемый содержанием (в граммах на кубический метр) пыли в воздухе. Так для порошка серы НКПВ составляет 2,3 г/м3. Концентрационные пределы пыли не являются постоянными и зависят от влажности, степени измельчения, содержания горючих веществ.

В основе механизма пылевых взрывов на шахтах лежат относительно слабые взрывы газовоздушной смеси воздуха и метана. Такие смеси считаются уже взрывоопасными при 5%-ной концентрации метана в смеси. Взрывы газовоздушной смеси вызывают турбулентность воздушных потоков, достаточных для того, чтобы образовать пылевое облако. Воспламенение пыли порождает ударную волну, поднимающую еще большее количество пыли, и тогда может произойти мощный разрушительный взрыв.

Меры, применяемые для предупреждения пылевых взрывов:

    1. вентиляция помещений, объектов
    2. увлажнение поверхностей
    3. разбавление инертными газам (СО 2, N2) или порошками силикатными

Пылевые взрывы внутри зданий, оборудования чаще всего происходят на элеваторах, где из-за трения зернышек при их перемещении образуется большое количество мелкой пыли.

  • Взрывы паровых облаков – процессы быстрого превращения, сопровождающиеся возникновением взрывной волны, происходящие на открытом воздушном пространстве в результате воспламенения облака, содержащего горючий пар.

Такие явления возникают при утечке сжиженного газа, как правило, в ограниченных пространствах (помещениях), где быстро растет та предельная концентрация горючих элементов, при которой происходит воспламенение облака.
Меры, применяемые для предупреждения взрывов паровых облаков:

    1. сведение к минимуму использования горючего газа или пара
    2. отсутствие источников зажигания
    3. расположение установок на открытом, хорошо проветриваемой местности

Наиболее часто ЧС, связанные с взрывами газа , возникают при эксплуатации коммунального газового оборудования.

Для предупреждения таких взрывов ежегодно проводят профилактику газового оборудования. Здания взрывоопасных цехов, сооружений, часть панелей в стенах делают легкоразрушаемыми, а крыши – легкосбрасываемыми.