Психология

Спектральный анализ. Спектральный анализ в астрономии

Спектральным анализом называют метод исследования химического состава различных веществ по их спектрам.

Анализ, проводимый по спектрам испускания, называют эмиссионным, а по спектрам поглощения - абсорбционным спектральным анализом.

В основе эмиссионного спектрального анализа лежат следующие факты:

1. Каждый элемент имеет свой спектр (отличается числом линий, их расположением и длинами волн), который не зависит от способов возбуждения.

2. Интенсивность спектральных линий зависит от концентрации элемента в данном веществе.

Для выполнения спектрального анализа вещества с неизвестным химическим составом необходимо осуществить две операции: заставить каким-то образом атомы этого вещества излучать свет с линейчатым спектром, затем разложить этот свет в спектр и определить длины волн наблюдаемых в нем линий. Сравнивая полученный линейчатый спектр с известными спектрами химических элементов таблицы Менделеева, можно определить, какие химические элементы имеются в составе исследуемого вещества. Путем сравнения интенсивности различных линий спектра можно определить и относительное содержание различных элементов в этом веществе.

Спектральный анализ может быть качественный и количественный.

Если исследуемое вещество находится в газообразном состоянии, то для возбуждения атомов вещества обычно применяется искровой разряд. Исследуемым газом заполняется трубка с двумя электродами на концах. На эти электроды подается высокое напряжение и в трубке возникает электрический разряд. Удары электронов, разгоняемых электрическим полем, приводят к ионизации и возбуждению атомов исследуемого газа. При переходах возбужденных атомов в нормальное состояние излучаются кванты света, характерные для данного элемента.

Для определения химического состава вещества, находящегося в твердом или жидком состоянии, по его спектру излучения необходимо сначала перевести исследуемое вещество в газообразное состояние и заставить каким-то образом этот газ испускать свет. Обычно для проведения спектрального анализа образцов вещества в твердом состоянии используют дуговой разряд. В плазме дуги происходит превращение вещества в пар, возбуждение и ионизация атомов. Электроды, между которыми зажигается дуговой разряд, обычно изготавливаются из исследуемого вещества (если он металл) или из графита или меди. Углерод и медь выбираются по той причине, что спектры излучения их атомов в видимой области имеют небольшое число линий и, следовательно, не создают серьезных помех для наблюдения спектра исследуемого вещества. В углубление нижнего электрода помещается порошок исследуемого вещества.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 531-532.

Задумывались ли вы над тем, откуда мы знаем о свойствах далёких небесных тел?

Наверняка вам известно о том, что таким знаниям мы обязаны спектральному анализу. Однако нередко мы недооцениваем вклад этого метода в само понимание . Появления спектрального анализа перевернуло многие устоявшиеся парадигмы о строении и свойствах нашего мира.

Благодаря спектральному анализу мы имеем представление о масштабе и величии космоса. Благодаря нему мы перестали ограничивать Вселенную Млечным Путём. Спектральный анализ открыл нам великое разнообразие звезд, рассказал об их рождении, эволюции и смерти. Этот метод лежит в основе практически всех современных и даже грядущих астрономических открытий.

Узнать о недосягаемом

Ещё два столетия назад было принято считать, что химических состав планет и звезд навсегда останется для нас загадкой. Ведь в представлении тех лет космические объекты всегда останутся для нас недоступными. Следовательно, мы никогда не получим пробного образца какой-либо звезды или планеты и никогда не узнаем об их составе. Открытие спектрального анализа полностью опровергло это заблуждение.

Спектральный анализ позволяет дистанционно узнать о многих свойствах далёких объектов. Естественно, без такого метода современная практическая астрономия просто бессмысленна.

Линии на радуге

Темные линии на спектре Солнца заметил ещё в 1802 году изобретатель Волластон. Однако сам первооткрыватель особо не зациклился на этих линиях. Их обширное исследование и классификацию произвел в 1814 году Фраунгофер. В ходе своих опытов он заметил, что своим набором линий обладает Солнце, Сириус, Венера и искусственные источники света. Это означало, что эти линии зависят исключительно от источника света. На них не влияет земная атмосфера или свойства оптического прибора.

Природу этих линий в 1859 открыл немецкий физик Кирхгоф вместе с химиком Робертом Бунзеном. Они установили связь между линиями в спектре Солнца и линиями излучения паров различных веществ. Так они сделали революционное открытие о том, что каждый химический элемент обладает своим набором спектральных линий. Следовательно, по излучению любого объекта можно узнать о его составе. Так был рождён спектральный анализ.

В ходе дальнейших десятилетий благодаря спектральному анализу были открыты многие химические элементы. В их число входит гелий, который был сначала обнаружен на Солнце, за что и получил своё название. Поэтому изначально он считался исключительно солнечным газом, пока через три десятилетия не был обнаружен на Земле.

Три вида спектра

Чем же объясняется такое поведение спектра? Ответ кроется в квантовой природе излучения. Как известно, при поглощении атомом электромагнитной энергии, его внешний электрон переходит на более высокий энергетический уровень. Аналогично при излучении – на более низкий. Каждый атом имеет свою разницу энергетических уровней. Отсюда и уникальная частота поглощения и излучения для каждого химического элемента.

Именно на этих частотах излучает и испускает газ. В тоже время твёрдые и жидкие тела при нагревании испускают полный спектр, независящий от их химического состава. Поэтому получаемый спектр подразделяется на три типа: непрерывный, линейчатый спектр и спектр поглощения. Соответственно, непрерывный спектр излучают твёрдые и жидкие тела, линейчатый – газы. Спектр поглощения наблюдается тогда, когда непрерывное излучение поглощается газом. Другими словами, разноцветные линии на тёмном фоне линейчатого спектра будут соответствовать тёмным линиям на разноцветном фоне спектра поглощения.

Именно спектр поглощения наблюдается у Солнца, тогда как нагретые газы испускают излучение с линейчатым спектром. Это объясняется тем, что фотосфера Солнца хоть и является газом, она не прозрачна для оптического спектра. Похожая картина наблюдается у других звёзд. Что интересно, во время полного солнечного затмения спектр Солнца становится линейчатым. Ведь в таком случае он исходит от прозрачных внешних слоёв её .

Принципы спектроскопии

Оптический спектральный анализ относительно прост в техническом исполнении. В основе его работы лежит разложение излучения исследуемого объекта и дальнейший анализ полученного спектра. Используя стеклянную призму, в 1671 году Исаак Ньютон осуществил первое «официальное» разложение света. Он же и ввёл в слово «спектр» в научный обиход. Собственно, раскладывая таким же образом свет, Волластон и заметил чёрные линии на спектре. На этом принципе работают и спектрографы.

Разложение света может также происходить с помощью дифракционных решёток. Дальнейший анализ света можно производить самыми различными методами. Изначально для этого использовалась наблюдательная трубка, затем – фотокамера. В наши дни получаемый спектр анализируется высокоточными электронными приборами.

До сих пор речь шла об оптической спектроскопии. Однако современный спектральный анализ не ограничивается этим диапазоном. Во многих областях науки и техники используется спектральный анализ практически всех видов электромагнитных волн – от радио до рентгена. Естественно, такие исследования осуществляются самыми различными методами. Без различных методов спектрального анализа мы бы не знали современной физики, химии, медицины и, конечно же, астрономии.

Спектральный анализ в астрономии

Как отмечалось ранее, именно с Солнца началось изучение спектральных линий. Поэтому неудивительно, что исследование спектров сразу же нашло своё применение в астрономии.

Разумеется, первым делом астрономы принялись использовать этот метод для изучения состава звезд и других космических объектов. Так у каждой звезды появился свой спектральный класс, отражающий температуру и состав их атмосферы. Также стали известны параметры атмосферы планет солнечной системы. Астрономы приблизились к пониманию природы газовых туманностей, а также , и многих других небесных объектов и явлений.

Однако с помощью спектрального анализа можно узнать не только о качественном составе объектов.

Измерить скорость

Эффект Доплера в астрономииЭффект Доплера в астрономии

Эффект Доплера был теоретически разработан австрийским физиком в 1840 году, в честь которого он и был назван. Этот эффект можно пронаблюдать, прислушиваясь к гудку проезжающего мимо поезда. Высота гудка приближающегося поезда будет заметно отличаться от гудка отдаляющегося. Примерно таким образом Эффект Доплера и был доказан теоретически. Эффект заключается в том, что для наблюдателя длина волны движущегося источника искажается. Она увеличивается при удалении источника и уменьшается при приближении. Аналогичным свойством обладают и электромагнитные волны.

При отдалении источника всё темные полосы на спектре его излучения смещаются к красной стороне. Т.е. все длины волн увеличиваются. Точно также при приближении источника они смещаются к фиолетовой стороне. Таким образом стал отличным дополнением к спектральному анализу. Теперь по линиям в спектре можно было узнать то, что раньше казалось невозможным. Измерить скорости космических объекта, рассчитать орбитальные параметры двойных звёзд, скорости вращения планет и многое другое. Особую роль эффект «красного смещения» произвёл в космологии.

Открытие американского учёного Эдвина Хаббла сравнимо с разработкой Коперником гелиоцентрической системы мира. Исследуя яркость цефеид в различных туманностях, он доказал, что многие из них расположены намного дальше Млечного Пути. Сопоставив полученные расстояния с спектров галактик, Хаббл открыл свой знаменитый закон. Согласно нему, расстояние до галактик пропорционально скорости их удаления от нас. Хотя его закон несколько разнится с современными представлениями, открытие Хаббла расширило масштабы Вселенной.

Спектральный анализ и современная астрономия

Сегодня без спектрального анализа не происходит практически ни одного астрономического наблюдения. С его помощью открывают новые экзопланеты и расширяют границы Вселенной. Спектрометры несут на себе марсоходы и межпланетные зонды, космические телескопы и исследовательские спутники. Фактически без спектрального анализа не было бы современной астрономии. Мы так и дальше бы вглядывались пустой безликий свет звёзд, о котором не знали бы ничего.

СПЕКТРАЛЬНЫЙ АНАЛИЗ , метод качеств. и количеств. определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и . Различают атомный и молекулярный спектральный анализ, задачи к-рых состоят в определении соотв. элементного и молекулярного состава в-ва. проводят по спектрам испускания , или , возбужденных разл. способами, абсорбционный спектральный анализ-по спектрам поглощения электромагн. излучения анализируемыми объектами (см. ). В зависимости от цели исследования, св-в анализируемого в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метро-логич. характеристики результатов сильно различаются. В соответствии с этим спектральный анализ подразделяют на ряд самостоят. методов (см., в частности, , ).

Часто под спектральным анализом понимают только атомно-эмис-сионный спектральный анализ (АЭСА)-метод , основанный на изучении спектров испускания своб. и в газовой фазе в области длин волн 150-800 нм (см. ).

При анализе твердых в-в наиб. часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструир. стабилизир. генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью к-рых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая непосредственно может служить дуги или искры; не проводящие ток твердые и помещают в углубления угольных той или иной конфигурации. В этом случае осуществляют как полное (распыление) анализируемого в-ва, так и фракционное последнего и возбуждение компонентов в соответствии с их физ. и хим. св-вами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования широко применяют к анализируемому в-ву , способствующих образованию в условиях высокотемпературной [(5-7)·10 3 К] угольной дуги легколетучих соед. ( , и др.) определяемых элементов. Для анализа геол. в виде широко применяют способ просыпки или вдувания в зону разряда угольной дуги.

При анализе , наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом ). Разработаны комбинир. автоматизир. источники, в к-рых для или распыления используют лампы тлеющего разряда или электротермич. анализаторы, а для получения спектров, напр.,-высокочастотные плазматроны. При этом удается оптимизировать условия и возбуждения определяемых элементов.

При анализе жидких (р-ров) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной , а также при пламенно-фотометрич. анализе (см. ). Для стабилизации т-ры разряда на оптимальном уровне вводят легкоионизируемых в-в, напр. . Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналит. сигнала к шуму и, т. обр., достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относит. стандартное отклонение составляет 0,01-0,03, что в ряде случаев позволяет применять АЭСА вместо точных, но более трудоемких и длительных хим. методов анализа.

Для смесей необходимы спец. вакуумные установки; спект-ры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием эти методы применяют редко.

Рис. 1. ВЧ плазматрон: 1-факел отходящих ; 2-зона возбуждения спектров; 3-зона поглощения ВЧ энергии; 4-нагреват. индуктор; 5-вход охлаж-дающега ( , ); 6-вход плазмообра-зующего (); 7-вход распыленной (несущий газ-аргон).

При анализе в-в высокой чистоты, когда требуется определять элементы, содержание к-рых меньше 10 -5 -10 %, а также при анализе токсичных и радиоактивных в-в предварительно обрабатывают; напр., частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем р-ра или вносят в меньшую массу более удобного для анализа в-ва. Для разделения компонентов применяют фракционную отгонку основы (реже-примесей), . АЭСА с использованием перечисленных хим. способов , как правило, наз. химико-спектральным анализом. Дополнит. операции разделения и определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относит. стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз.

Специфич. областью АЭСА является микроспектральный (локальный) анализ. При этом микрообъем в-ва (глубина кратера от десятков мкм до неск. мкм) испаряют обычно лазерным импульсом, действующим на участок пов-сти образца диаметром неск. десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании , в металловедении.

Спектры регистрируют с помощью и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия-для разделения спектральных линий с близкими длинами волн при анализе в-в с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракц. решетки (плоские, вогнутые, нарезные, голографич., профилированные), имеющие от неск. сотен до неск. тысяч штрихов на миллиметр, значительно реже-кварцевые или стеклянные призмы.

(рис. 2), регистрирующие спектры на спец. или (реже) на , предпочтительнее при качественном АЭСА, т. к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количеств. анализа вследствие сравнит. дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматич. режим измерений, обработку их результатов и выдачу конечных результатов анализа.



Рис.2. Оптическая схема : 1-входная щель; 2-поворотное зеркало; 3-сферич. зеркало; 4-дифракц. решетка; 5-лампочка освещения шкалы; 6-шкала; 7-фотопластинка.



Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2-дифракц. решетки; 3-выходные щели; 4-ФЭУ; 5-входные щели; 6 - с источниками света; 7 - генераторы искрового и дугового разрядов; 8- электронно-регистрирующее устройство; 9 - управляющий вычислит. комплекс.

В спектрометрах осуществляется фотоэлектрич. регистрация аналит. сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматич. обработкой данных на ЭВМ. Фотоэлектрич. многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналит. линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиб, интенсивные аналит. линии к-рых расположены в УФ области спектра при длинах волн меньше 180-200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значит. мере процедурами подготовки исходного в-ва к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиб. длительных этапов - , приведения р-ров к стандартному составу, растирания и , отбора заданной массы. Во мн. случаях многоэлементный АЭСА выполняется в течение неск. минут, напр.: при анализе р-ров с использованием автомати-зир. фотоэлектрич. спектрометров с ВЧ плазматронами или при анализе в процессе плавки с автоматич. подачей в источник излучения.

В черной и цветной распространены экспрессные полуколичественные (относит. стандартное отклонение 0,3-0,5 и более) методики определения содержания основных или наиб. характерных компонентов , напр. при их маркировке, при сортировке металлолома для его утилизации и т.д. Для этого применяют простые, компактные и дешевые визуальные и фотоэлектрич. приборы (стило-скопы и стилометры) в сочетании с искровыми генераторами. Диапазон определяемых содержаний элементов-от неск. десятых долей процента до десятков процентов.

АЭСА применяют в научных исследованиях; с его помощью открывали хим. элементы, исследуют археологич. объекты, устанавливают состав небесных тел и т.д. АЭСА широко применяется также для контроля технол. процессов (в частности, для установления состава исходного сырья, технол. и готовых продуктов), исследования объектов и др. С помощью АЭСА можно определять практически все элементы периодич. системы в весьма широком диапазоне содержаний - от 10 -7 % (пкг/мл) до десятков процентов (мг/мл). Достоинства АЭСА: возмож ность одновременного определения в малой навеске в-ва большого числа элементов (до 40 и более) с достаточно высокой точностью (см. табл.), универсальность методич. приемов при анализе разл. в-в, экспрессность, сравнительная простота, доступность и дешевизна аппаратуры.
, под ред. Х.И. Зильберштейна, Л., 1987; Кузяков Ю.Я., Семененко К.А., Зо-ров Н.Б., Методы спектрального анализа, М., 1990. Ю.И. Коровин,

Современная наука и техника немыслимы без знания химического состава веществ, которые являются объектами деятельности человека. Минералы, найденные геологами, и новые вещества и материалы, полученные химиками, прежде всего характеризуются по химическому составу. Для правильного ведения технологических процессов в самых различных отраслях народного хозяйства необходимо точное знание химического состава исходного сырья, промежуточных и готовых продуктов.

Бурное развитие техники предъявляет все новые требования к методам анализа вещества. Еще сравнительно недавно можно было ограничиться определением примесей, присутствующих в концентрации до 10-2–10-3%. Появление и быстрое развитие в послевоенные годы промышленности атомных материалов, а также производства твердых, жаропрочных и других специальных сталей и сплавов потребовало повышения чувствительности аналитических методов до 10-4– 10-6%, так как было установлено, что присутствие примесей даже в таких малых концентрациях существенно влияет на свойства материалов и ход некоторых технологических процессов.

В последнее время в связи с развитием промышленности полупроводниковых материалов к чистоте веществ, а следовательно, и к чувствительности аналитических методов предъявляются еще более высокие требования – необходимо определять примеси, содержание которых совершенно ничтожно (10-7–10-9%). Конечно, подобная сверхвысокая чистота веществ нужна только в отдельных случаях, но в той или иной степени повышение чувствительности анализа стало необходимым требованием почти во всех областях науки и техники.

При производстве полимерных материалов концентрация примесей в исходных веществах (мономерах) была весьма большой – часто десятые доли и даже целое число процентов. Недавно обнаружено, что качество многих готовых полимеров очень сильно зависит от их чистоты. Поэтому в настоящее время исходные непредельные соединения и некоторые другие мономеры проверяют на присутствие примесей, содержание которых не должно превышать 10-2– 10-4%. В геологии все шире используются гидрохимические методы разведки рудных месторождений. Для их успешного применения необходимо определять соли металлов в природных водах при концентрации 10-4– 10-8 г/л и даже меньше.

Повышенные требования предъявляются в настоящее время не только к чувствительности анализа. Внедрение в производство новых технологических процессов обычно тесно связано с разработкой методов, обеспечивающих достаточно высокую скорость и точность анализа. Наряду с этим от аналитических методов требуется высокая производительность и возможность автоматизации отдельных операций или всего анализа. Химические методы анализа далеко не всегда отвечают требованиям современной науки и техники. Поэтому все шире внедряются в практику физикохимические и физические методы определения химического состава, которые обладают рядом ценных характеристик. Среди этих методов одно из главных мест по праву занимает спектральный анализ.

Благодаря высокой избирательности спектрального анализа можно с помощью одной и той же принципиальной схемы, на одних и тех же приборах анализировать самые различные вещества, выбирая в каждом отдельном случае только наиболее благоприятные условия для получения максимальной скорости, чувствительности и точности анализа. Поэтому несмотря на громадное число аналитических методик, предназначенных для анализа различных объектов, все они основаны на общей принципиальной схеме.

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Методы спектрального анализа делятся на эмиссионные (эмиссия – испускание) и абсорбционные (абсорбция – поглощение).

Рассмотрим схему эмиссионного спектрального анализа (рис. 6.8а). Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Рис. 6.8.

а – эмиссионного: б – абсорбционного: 1 – источник света; 2 – осветительный конденсор; 3 – кювета для анализируемой пробы; 4 – спектральный аппарат; 5 – регистрация спектра; 6 – определение длины волны спектральных линий или полос; 7 – качественный анализ пробы с помощью таблиц и атласов; 8 – определение интенсивности линий или полос; 9 – количественный анализ пробы по градуировочному графику; λ – длина волны; J – интенсивность полос

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов – спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Спектральные аппараты устроены таким образом, что световые колебания каждой длины волны, попадающие в прибор, образуют одну линию. Сколько различных волн присутствовало в излучении источника света, столько линий получается в спектральном аппарате.

Атомные спектры элементов состоят из отдельных линий, так как в излучении атомов имеются только некоторые определенные волны (рис. 6.9а). В излучении раскаленных твердых или жидких тел присутствует свет любой длины волны. Отдельные линии в спектральном аппарате сливаются друг с другом. Такое излучение имеет сплошной спектр (рис. 6.9е). В отличие от линейчатого спектра атомов, молекулярные спектры испускания веществ, которые не распались при высокой температуре, являются полосатыми (рис. 6.96). Каждая полоса образована большим числом близко расположенных линий.

Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Конструкция спектрального аппарата зависит от метода регистрации спектра. Для визуального наблюдения спектров служат спектроскопы стилоскопы и стилометры. Фотографирование спектров осуществляют с помощью спектрографов. Спектральные аппараты – монохроматоры – позволяют выделять свет одной длины волны, после чего он может быть зарегистрирован с помощью фотоэлемента или другого электрического приемника света.

Рис. 6.9.

а – линейчатый; 6 – полосатый; видны отдельные линии, составляющие полосу; в – сплошной. Наиболее темным местам в спектре соответствует наибольшая интенсивность света (негативное изображение); λ – длина волны

При качественном анализе необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого нужно найти длину волны линии по ее положению в спектре, а затем с помощью таблиц определить ее принадлежность тому или иному элементу. Для рассмотрения увеличенного изображения спектра на фотографической пластинке и определения длины волны служат измерительные микроскопы , спектропроекторы и другие вспомогательные приборы.

Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме ) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах.

Связь между интенсивностью линии в спектре и концентрацией элемента в анализируемой пробе устанавливают с помощью эталонов – образцов, подобных анализируемым, но с точно известным химическим составом. Эту связь обычно выражают в виде градуировочных графиков.

Схема проведения абсорбционного спектрального анализа (рис. 6.8б) отличается от уже рассмотренной схемы только в своей начальной части. Источником света служит нагретое твердое тело или другой источник сплошного излучения, т.е. излучения с любой длиной волны. Анализируемую пробу помещают между источником света и спектральным аппаратом. Спектр вещества составляют тс длины волн, интенсивность которых уменьшилась при прохождении сплошного света через это вещество (рис. 6.10). Спектр поглощения веществ удобно изображать графически, откладывая по оси абсцисс длину волны, а по оси ординат – величину поглощения света веществом.

Рис. 6.10.

а – фотографическое; б – графическое; I – спектр источника сплошного света; II – спектр того же излучения после прохождения через анализируемую пробу

Спектры поглощения получают с помощью спектральных аппаратов – спектрофотометров, в состав которых входят источник сплошного света, монохроматор и регистрирующее устройство.

В остальном схемы проведения абсорбционного и эмиссионного анализа совпадают.

Спектральный анализ по спектрам испускания или поглощения включает следующие операции.

  • 1. Получение спектра анализируемой пробы.
  • 2. Определение длины волны спектральных линий или полос. После этого с помощью таблиц или атласов устанавливают их принадлежность к определенным элементам или соединениям, т.е. находят качественный состав пробы.
  • 3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам или соединениям, что позволяет найти их концентрацию в анализируемой пробе по предварительно построенным с помощью эталонов градуировочным графикам, т.е. найти количественный состав пробы.

Весь процесс выполнения спектрального анализа состоит, как мы видели, из нескольких этапов. Эти этапы можно изучать последовательно, независимо друг от друга, а затем рассмотреть их взаимосвязь.

С помощью спектрального анализа можно определять как атомный (элементарный), так и молекулярный состав вещества. Спектральный анализ позволяет проводить качественное открытие отдельных компонентов анализируемой пробы и количественное определение их концентраций.

Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально. Например, относительно просто выполняется анализ смеси редкоземельных элементов или смеси инертных газов. С помощью спектрального анализа можно определять изомерные органические соединения с очень близкими химическими свойствами.

Методы атомного спектрального анализа, качественного и количественного, в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Следует отмстить, что широта и объем практических применений молекулярного спектрального анализа, особенно в последнее время, быстро и непрерывно растут. Это связано прежде всего с разработкой и выпуском спектрально-аналитической аппаратуры для этого метода.

Область использования молекулярного спектрального анализа охватывает главным образом органические вещества, хотя можно с успехом анализировать и неорганические соединения. Молекулярный спектральный анализ внедряется главным образом в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Чувствительность спектрального анализа очень высока. Минимальная концентрация определяемого вещества, которая может быть обнаружена и измерена спектральными методами, колеблется в широких пределах в зависимости от свойств этого вещества и состава анализируемой пробы. Прямым анализом при определении большинства металлов и ряда других элементов сравнительно легко достигается чувствительность 10-3–а для некоторых веществ даже 10-5–1-6%. И только в особо неблагоприятных случаях чувствительность уменьшается до 10-1–10-2%. Применение предварительного отделения примесей от основы пробы позволяет сильно (часто в тысячи раз) повысить чувствительность анализа. Благодаря высокой чувствительности атомный спектральный анализ широко применяется для анализа чистых и особо чистых металлов, в геохимии и почвоведении для определения микроконцентраций различных элементов, в том числе редких и рассеянных, в промышленности атомных и полупроводниковых материалов.

Чувствительность молекулярного спектрального анализа для различных веществ изменяется в еще более широких пределах. В ряде случаев с трудом удается определять вещества, содержание которых в анализируемом образце составляет проценты и десятые доли процента, но можно привести примеры и очень высокой чувствительности молекулярного анализа 10-7–10-8%. Точность атомного спектрального анализа зависит от состава и структуры анализируемых объектов. При анализе образцов, близких по своей структуре и составу, можно легко достигнуть высокой точности. Ошибка в этом случае не превышает ±1–3% по отношению к определяемой величине. Поэтому, например, точным является серийный спектральный анализ металлов и сплавов. В металлургии и машиностроении спектральный анализ стал в настоящее время основным аналитическим методом.

Значительно ниже точность анализа веществ, состав и структура которых сильно меняется от пробы к пробе, но в последнее время и в этой области положение заметно улучшилось. Стал возможным количественный спектральный анализ руд, минералов, горных пород, шлаков и тому подобных объектов. Хотя полностью задача еще не решена, количественный анализ неметаллических проб сейчас широко применяется во многих отраслях промышленности – в металлургии, геологии, при производстве огнеупоров, стекол и других видов продукции.

Относительная ошибка определения при атомном спектральном анализе мало зависит от концентрации. Она остается почти постоянной как при анализе малых примесей и добавок, так и при определении основных компонентов образца. Точность химических методов анализа существенно снижается при переходе к определению примесей. Поэтому атомный спектральный анализ точнее химического в области малых концентраций. При средних концентрациях (0,1–1%) определяемых веществ точность обоих методов примерно одинакова, но в области высоких концентраций точность химического анализа, как правило, выше. Молекулярный спектральный анализ дает обычно более высокую точность определения, чем атомный, и не уступает в точности химическому даже при больших концентрациях.

Скорость спектрального анализа значительно превышает скорость выполнения анализа другими методами. Это объясняется тем, что при спектральном анализе не требуется предварительного разделения пробы на отдельные компоненты. Кроме того, сам анализ выполняется очень быстро. Так, при применении современных методов спектрального анализа точное количественное определение нескольких компонентов в сложном образце занимает всего несколько минут с момента доставки пробы в лабораторию до получения результатов анализа. Продолжительность анализа, конечно, возрастает, когда для повышения точности или чувствительности требуется предварительная обработка пробы.

С высокой скоростью проведения спектрального анализа тесно связана его большая производительность, что очень существенно при массовых анализах. Благодаря большой производительности и малому расходу реактивов и других материалов стоимость одного анализа при применении спектральных методов обычно мала, несмотря на значительные первоначальные затраты на приобретение спектральноаналитического оборудования. Больше того, как правило, чем выше первоначальные затраты и сложнее предварительная подготовка аналитической методики, тем быстрее и дешевле выполнение массовых анализов.

По своему существу спектральный анализ является приборным методом. При использовании современной аппаратуры число операций, требующих вмешательства спектроскописта, невелико. Установлено, что и эти оставшиеся операции могут быть автоматизированы. Таким образом, спектральный анализ позволяет подойти к полной автоматизации определения химического состава вещества.

Спектральный анализ является универсальным. С его помощью можно определять практически любые элементы и соединения в самых разнообразных твердых, жидких и газообразных аналитических объектах.

Для спектрального анализа характерна высокая избирательность. Это означает, что почти каждое вещество может быть качественно и количественно определено в сложной пробе, без ее разделения.

Спектральный анализ подразделяют на несколько самостоятельных методов. Среди них выделяют: инфракрасную и ультрафиолетовую спектроскопию, атомно-абсорбционный, люминесцентный и флуоресцентный анализ, спектроскопию отражения и комбинационного рассеяния, спектрофотометрию, рентгеновскую спектроскопию, а также ряд других методов.

Абсорбционный спектральный анализ основан на изучении спектров поглощения электромагнитного излучения. Эмиссионный спектральный анализ проводится по спектрам испускания атомов, молекул или ионов, возбужденных различными способами.

Атомно-эмиссионный спектральный анализ

Спектральным анализом часто называют только атомно-эмиссионный спектральный анализ, который основан на исследовании спектров испускания свободных атомов и ионов в газовой фазе. Его проводят в области длин волн 150-800 нм. В источник излучения вводят пробу исследуемого вещества, после чего в нем происходит испарение и диссоциация молекул, а также возбуждение образовавшихся ионов. Они испускают излучение, которое фиксируется регистрирующим устройством спектрального прибора.

Работа со спектрами

Спектры проб сравнивают со спектрами известных элементов, которые можно найти в соответствующих таблицах спектральных линий. Так узнают состав анализируемого вещества. Количественный анализ подразумевает концентрации данного элемента в анализируемого веществе. Ее узнают по величине сигнала, например, по степени почернения или оптической плотности линий на фотопластинке, по интенсивности светового потока на фотоэлектрическом приемнике.

Виды спектров

Непрерывный спектр излучения дают вещества, находящиеся в твердом или жидком состоянии, а также плотные газы. В таком спектре нет разрывов, в нем представлены волны всех длин. Его характер зависит не только от свойств отдельных атомов, но и от их взаимодействия друг с другом.

Линейчатый спектр излучения характерен для веществ в газообразном состоянии, при этом атомы почти не взаимодействуют друг с другом. Дело в том, что изолированные атомы одного химического элемента излучают волны строго определенной длины волны.

При увеличении плотности газа спектральные линии начинают расширяться. Для наблюдения такого спектра используют свечение газового разряда в трубке или паров вещества в пламени. Если пропускать белый свет через неизлучающий газ, на фоне непрерывного спектра источника появятся темные линии спектра поглощения. Газ интенсивнее всего поглощает свет тех длин волн, которые он испускает в нагретом состоянии.