Здоровье

Ацетилен - газ с самой высокой температурой пламени! Применение ацетилена. Сварка ацетиленом Ацетилен имеет

Для газопламенных работ необходимо осуществить передачу тепла из пламени в металл в количестве, достаточном для конкретных условий работ. Горючие газы сгорают, как правило, в смеси с кислородом. Наибольшей температурой обладает ацетилено-кислородное пламя (3200°С), что позволяет использовать ацетилен при любых видах газопламенной обработки металлов. Интенсивность горения пламени определяется произведением нормальной скорости горения на теплоту сгорания смеси. Ацетилен обладает наивысшей «интенсивностью горения», которая для смеси стехиометрического состава составляет 27 700 ккал/(м 2 *с).

Ацетилен

Ацетилен относится к группе непредельных углеводородов ряда С n Н 2n-2 . . Это бесцветный горючий газ со специфическим запахом; благодаря наличию в нем примесей – фосфористого водорода, сероводорода и пр. плотность ацетилена при 20°С и 760 мм рт. ст. равна 1,091 кг/м 3 ; при 0°С и 760 мм рт. ст. – – плотность 1,171 кг/м 3 . Ацетилен легче воздуха; плотность по сравнению с плотностью воздуха 0,9; молекулярная масса 26,038. Критическая точка для ацетилена характеризуется давлением насыщенного пара, равным 61,65 кгс/см 2 , и температурой 35,54°С. При 760 мм рт. ст. и температуре –84°С ацетилен переходит в жидкое состояние, при температуре –85°С – затвердевает.

Ацетилен – единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей. Ацетилен высокоэндотермическое соединение; при разложении 1 кг ацетилена выделяется более 2000 ккал, т. е. примерно в 2 раза больше, чем при взрыве 1 кг твердого ВВ тротила. Температура самовоспламенения ацетилена колеблется в пределах 500 – 600°С при давлении 2 кгс/см 2 и заметно снижается с увеличением давления; так, при давлении 22 кгс/см 2 температура самовоспламенения ацетилена равна 350°С, а при наличии катализаторов, таких, как железный порошок, силикагель, активный уголь и др. разложение ацетилена начинается при 280 – 300°С. Присутствие окиси меди снижает температуру самовоспламенения до 246°С. При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения; поэтому при изготовлении ацетиленового оборудования запрещается применять сплавы, содержащие более 70% Cu.

Взрывчатый распад ацетилена, как правило, начинается при интенсивном нагреве со скоростью 100 – 500°С/с. При медленном нагреве происходит реакция полимеризации ацетилена, идущая с выделением тепла, которая, как правило, при температуре свыше 530°С влечет за собой взрывчатый распад ацетилена. Нижнее предельное давление, при котором возможно разложение ацетилена, равно 0,65 кгс/см 2 . Пределы взрываемости для ацетилена широки (табл. 2). Наиболее опасными являются смеси ацетилена с кислородом стехиометрического состава (~30%). Скорости распространения пламени и детонации достигают наибольшего значения при соотношении ацетилена и кислорода 1:2,5 и соответственно равны 13,5 и 2400 м/с при нормальных условиях. Давление, образующееся при взрыве ацетилена, зависит от начальных параметров и характера взрыва. Оно может возрасти примерно в 10 – 12 раз по сравнению с начальным при взрыве в небольших сосудах и может быть увеличено в 22 раза при детонации чистого ацетилена и в 50 раз при детонации ацетилено-кислородной смеси.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии при получении его в переносных или стационарных ацетиленовых генераторах, либо в растворенном состоянии. Растворенный ацетилен представляет собой раствор ацетилена в ацетоне, распределенный равномерно в пористом наполнителе под давлением. Растворимость ацетилена зависит от температуры и давления. Пористая масса в баллоне обеспечивает рассосредоточение ацетилена по всему объему и локализацию взрывчатого распада ацетилена. При отсутствии пористой массы в баллоне инициированный взрывной распад ацетилена, растворенного в ацетоне, происходит при давлении ниже 5 кгс/см 2 . В качестве пористых наполнителей могут быть использованы не только насыпные пористые массы, но и литые пористые массы, которые нашли применение за рубежом.

Физико-химические показатели газообразного и растворенного технического ацетилена оговорены ГОСТ 5457 – 75. По содержанию допустимого количества примесей различают ацетилен растворенный, растворенный и газообразный; допустимое содержание примесей (в объемных долях) соответственно равно:

  • воздуха и других малорастворимых в воде газов – не более 0,9, 1,0, 1,5;
  • фосфористого водорода – 0,01; 0,04; 0,08;
  • сероводорода – 0,005; 0,05; 0,15;
  • водяных паров при 20°С и 760 мм рт. ст. – 0,5; 0,6.

Технический растворенный ацетилен транспортируют в стальных баллонах. Допустимое максимальное давление в баллонах не должно вревышать 13,4 кгс/см 2 при температуре –5°С и давлении 760 мм рт. ст. и 30 кгс/см 2 при температуре+40°С и давлении 760 мм рт. ст. Остаточное давление в баллоне при тех же параметрах не должно быть меньше соответственно 0,5 и З,0 кгс/см 2 .

Для газопламенной обработки металлов, наряду с ацетиленом, полученным из карбида кальция, применяют пиролизный ацетилен, получаемый из природного газа термоокислительным пиролизом метана с кислородом. Пиролизный ацетилен также хранят и транспортируют в баллонах в растворенном виде. Наполнитель и растворитель для пиролизного ацетилена тот же, что и для ацетилена из карбида кальция.

При применении растворенного ацетилена по сравнению с газообразным обеспечиваются наибольший коэффициент использования карбида, чистота рабочего места сварщика, устойчивая работа аппаратуры и безопасность в работе. Основным сырьем для получения ацетилена, используемого при газопламенной обработке металлов, является карбид кальция. Карбид кальция получают в электрических печах при взаимодействии обожженной извести с коксом или антрацитом. Расплавленный карбид кальция разливают в изложницы, где он застывает; затем его дробят в кусковых дробилках и сортируют по размерам кусков согласно ГОСТ 1460. Ацетилен получают в результате разложения (гидролиза) карбида кальция водой. Действительный «литраж» ацетилена из 1 кг технического карбида при 20°С и 760 мм рт. ст. не превышает 285 л и зависит от грануляции карбида. С увеличением размеров кусков карбида «литраж» увеличивается, однако скорость разложения его уменьшается, т. е. увеличивается длительность разложения карбида (табл. 1).

Содержание фосфористого водорода в ацетилене по объему не более 0,08%, содержание сульфидной серы не более 1,2%. В ГОСТ 1460 оговаривается также допустимое количество кусков карбида кальция других размеров в партиях указанной грануляции. Большой тепловой эффект реакции разложения карбида создает опасность сильного перегрева. Без отвода тепла при взаимодействии стехиометрического количества карбида кальция и воды реакционная масса разогревается до 700 – 800°С. Разложение карбида при недостаточном охлаждении и особенно в присутствии воздуха может привести к взрыву, поэтому необходимо процесс осуществлять при значительном избытке воды. Для разложения 1 кг карбида необходимо 5 – 20 л воды. Особое внимание необходимо обращать на наличие карбидной пыли в карбиде. Пыль разлагается почти мгновенно; за счет мгновенного разогрева может возникнуть взрыв ацетилена. Поэтому переработка пыли в обычных генераторах, не приспособленных для использования пыли, не допускается. Если содержание пыли значительно, карбид кальция перед загрузкой в генератор просеивают через сито с ячейками диаметром 2 мм. Накопившуюся пыль следует разложить на открытом воздухе в специальном сосуде вместимостью не менее 800 – 1000 л при интенсивном помешивании, одновременно высыпая не более 250 г карбидной пыли. Воду следует менять после разложения пыли в количестве до 100 кг.

Карбид кальция транспортируют и хранят в железных барабанах с толщиной стенки не менее 0,51 мм и массой 50 – 130 кг. Боковую поверхность барабанов делают гофрированной для большей жесткости. Карбид кальция интенсивно поглощает влагу даже из воздуха, поэтому при плохой герметичности тары возможно образование ацетилена непосредственно в барабане. Герметичность барабанов следует тщательно проверять; при перевозке барабанов на открытых машинах необходимо покрывать барабаны брезентом. При обнаружении повреждения барабана, карбид должен быть пересыпан в другую герметичную тару.

При обслуживании стационарных генераторов карбид из барабанов пересыпают в специальные приемники-бункеры. Вскрытие барабанов на станции, как правило, механизировано. Для этих целей применяют станки, в которых верхняя крышка вырезается специальным режущим роликом или клиновыми ножами. Ножи и ролик изготовляют из неискрящегося материала. Кроме того, к месту реза подается масло или азот.

Транспортировка карбида кальция в барабанах для стационарных генераторов производительностью свыше 20 м 3 /ч экономически не оправдана, так как раскупорка барабанов занимает значительное время; накапливается большое количество порожней тары, которая вторично не может быть использована; потери карбида за счет его дробления при перекатывании барабанов и последующего отсева от пыли значительны. Поэтому можно считать наиболее перспективным контейнерный способ перевозки и хранения карбида для стационарных установок. При газопламенной обработке алюминия, латуни, свинца и других металлов, имеющих температуру плавления ниже температуры плавления стали, в качестве горючего газа целесообразно применять не ацетилен, а газы – заменители ацетилена или жидкие горючие. Основные физические и тепловые свойства горючих газов приведены в табл. 2.

Таблица 1. Физико-химические показатели карбида кальция

Таблица 2. Основные физические и тепловые свойства горючих газов

Наименование горючего газа и химическая формула

Низшая теплота сгорания при 20°С и 760 мм рт. ст., ккал/м з

Температура пламени смеси с кислородом, °С

Коэффициент замены ацетилена

Плотность при 20°С и 760 мм рт. ст., кг/м 3

Критическое давление, кгс/см 2

Температура,°С

Пределы взрываемости, % содержания горючего в смеси

Оптимальное соотношение между кислородом и другим горючим в смеси

Относительная скорость распространения пламени с воздухом

критическая * 1

плавления

с воздухом

с кислородом

Ацетилен С 2 Н 2

Водород Н 2

Метан СН 4

Этан С 2 Н 6

Пропан С 3 Н 8

Бутан С 4 Н 10

Пропан-бутан

Этилен С 2 Н 4

Окись углерода СО

Сланцевый газ * 2

Коксовый газ * 2

Природный газ * 2 (метан 98%)

Нефтяной (попутный) газ

Городской газ * 2

Пиролизный газ

МАПП или МАФ

Пары бензина (~С 7 Н 15)

10 тыс. ккал/кг

0,7-0,74 кг/л

Пары керосина (~С 7 Н 14)

10 тыс. ккал/кг

0,79-0,82 кг/л

*1 Критической температурой называется такая температура, выше которой газ не переходит в жидкое состояние ни при каком давлении.

*2 Для горючих газовых смесей приводимые данные относятся к средним составам этих газов.

Широкие пределы изменения плотности, температуры пламени и теплоты сгорания объясняются изменяющимся химическим составом указанных газов, зависящим от месторождения или места производства.

Метилацетилен-пропадиен МАПП (широко применяемый в США) - смесь горючих газов; по физическим свойствам близок к пропану. Пределы взрываемости МАПП в смеси с воздухом 3,4 - 10,8%, в смеси с кислородом 2,5 - 60%. Смеси метилацетилена и пропадиена термодинамически нестойки, поэтому в состав МАППа вводят стабилизатор. Распад метилацетилена, аналогично ацетилену, происходит с большим выделением тепла. Температура пламени МАПП (2900°С) близка к температуре ацетилена. МАПП используют для кислородной резки и сварки и других газопламенных процессов.

Горючее МАФ - метилацетиленовая пропадиеновая фракция является отходом олифинового производства, а также отходом производства этилена и моновинилацетилена. Эта фракция содержит 48 - 75% смеси метилацетилена и пропадиена и стабилизаторы: 3% пропилена, 15% пропана, 7% других углеводородов. Пределы взрываемости для МАФа те же, что и для МАППа. МАФ нечувствителен к удару. Баллоны с МАФом не взрываются, находясь рядом с горящим баллоном. Смесь инертна при температуре до 215°С и давлении до 20 кгс/см 2 . При соприкосновении с медью образуются взрывоопасные соединения - ацетилениды меди. Скорость распространения пламени МАФ равна 470 см/с. Вместимость баллонов для сжиженных газов 40 или 55 дм 3 ; толщина стенки 3 мм. Предельное рабочее давление (кгс/см 2)в баллонах для сжиженных газов различно: для пропана не более 16, для пропилена 20, для бутана и бутилена 3,8. Коэффициент наполнения баллонов сжиженными газами (в кгс/м 3) соответственно будет равен: 425 для пропана, 445 - пропилена, 448 - бутана и 526 - бутилена. Коэффициент наполнения обозначает массу газа в кг на 1 м 3 вместимости баллона и не должен превышать значений, указанных для каждого газа.

Газ ацетилен был открыт еще в 1836 году ученым Эдмундом Дэви вследствие воздействия водой на карбид кальция. С 1855 по 1862 год французский химик Марселен Бертло смог получить ацетилен, или как раньше его назвали «двууглеродистый водород», сразу несколькими способами, он же присвоил ему название «ацетилен».

Яркое, теплого спектра и горячее пламя ацетилена стали использовать в светильниках вместо газовых фонарей не только в домашних условиях, но и для освещения улиц и даже в качестве фонаря для велосипедов и карет.

Свойства ацетилена

Ацетилен в советское время применяли на стройках путем смешивания карбида кальция с водой. Неприятный запах, сопровождавший процесс, был обусловлен примесями аммиака и сероводорода в техническом карбиде. Сам по себе чистый ацетилен:

  • газ со слабым эфирным запахом,
  • легким сладковатым привкусом,
  • легче воздуха,
  • слаботоксичный.

В таблице ниже представлены основные значения плотности, молярной массы и веса литра газа ацетилена при нормальных условиях.

Основные значения плотности, молярной массы и веса литра и 1м3 газа ацетилена при нормальных условиях
Вещество Химическая формула Удельный вес (кг/м3) Плотность (г/см3) Вес 1 литра (г) Молярная масса (г/моль)
Ацетилен C 2 H 2 1,09 1,00109 1,0896 26,038

При естественной влажности и нормальной температуре ацетилен бесцветный газ, а при понижении температуры до -85ºС кристаллизуется.

Особой характеристикой, которая в большой степени обусловила области использования ацетилена, стала его повышенная взрывоопасность во множестве сопутствующих условий, например, при резком повышении температуры (даже в результате трения) до 450 - 500ºС.

Смесь воздуха, а тем более кислорода с ацетиленом взрывоопасна в большом диапазоне концентраций (от 2,8% и до 81%). При 335ºС происходит самовоспламенение газа. Соединения ацетилена с медью или серебром взрываются от удара.

При повышении давления на большие объемы газа выше 2 кг/см2 газ становится взрывоопасным и может детонировать даже от искры статического электричества на одежде. Взрыв сопровождается увеличением давления до 10 раз и температуры до 3000 градусов Цельсия.

Для понижения взрывчатости ацетилен хранится и перевозится в баллонах с мелкокапиллярным пористым наполнителем либо растворяется в ацетоне, азоте, метане, пропане.

Применение

Ацетилен - один из наиболее значимых углеводородов, активно вступающих в химические связи. Применение газа довольно широко:

  • горючее для газовой резки и сварки металла,
  • производство растворителей путем присоединения хлора и хлорпроизводных веществ, отщепление хлороводорода дает высококачественный растворитель, применимый для химчистки тканей,
  • производство поливинилхлорида (изоляция проводов, кожзамы, трубы и пр),
  • выпуск других полимеров, необходимых для создания пластмассы, различных каучуковых смесей, синтетических волокон,
  • создание взрывчатых веществ.

Чтобы понять, где применяется ацетилен, необходимо изучить и понять, что же это такое. Данное вещество представляет собой горючий бесцветный газ. Его химическая формула - С 2 Н 2 . Газ обладает атомной массой, равной 26,04. Он немного легче воздуха и обладает резким запахом. Получение и применение ацетилена осуществляется лишь в промышленных условиях. Получают данное вещество из путем разложения компонента в воде.

Чем опасен ацетилен

Ограничено его необычайными свойствами. самовоспламеняется. Происходит это при температуре 335°С, а его смесь с кислородом - при температуре от 297 до 306°С, с воздухом - при температуре от 305 до 470°С.

Стоит отметить, что ацетилен технический взрывоопасен. Это было происходит при:

  1. Повышении температуры до 450-500°С, а также при давлении в 150-200 кПа, что равно 1,5-2 атмосферам.
  2. Смесь ацетилена и кислорода при атмосферном давлении также опасна, если ацетилена в ней содержится 2,3-93%. Взрыв может произойти от сильного нагрева, открытого пламени и даже от искры.
  3. При подобных же условиях происходит взрыв смеси воздуха с ацетиленом, если в ней содержится 2,2-80,7 % ацетилена.
  4. Если газ долго соприкасается с медным или серебряным предметом, то может образоваться ацетиленистое взрывчатое серебро или же медь. Это вещество очень опасно. Взрыв может произойти от сильного удара или же в результате повышения температуры. Работать с газом следует осторожно.

Особенности вещества

Ацетилен, свойства и применение которого до конца не изучены, в результате взрыва может привести к несчастному случаю и сильнейшим разрушениям. Вот некоторые данные. При взрыве одного килограмма данного вещества выделяется в 2 раз больше тепловой энергии, чем при взрыве такого же количества тротила, а также в полтора раза больше, чем при взрыве одного килограмма нитроглицерина.

Области применения ацетилена

Ацетилен - это горючий газ, который используется при газовой сварке. Нередко его используют для кислородной резки. Стоит отметить, что температура горения смеси кислорода и ацетилена может достигать 3300°С. Благодаря этому свойству вещество чаще других используется при сварке. Ацетиленом обычно заменяют и пропан-бутан. Вещество обеспечивает производительность и высокое качество сварки.

Снабжение постов газом для резки и сварки может осуществляться от или же от баллонов с ацетиленом. Для хранения данного вещества обычно используют емкости белого цвета. Как правило, на них присутствует надпись «Ацетилен», нанесенная красной краской. Стоит учесть, что существует ГОСТ 5457-75. Согласно данному документу для обработки металлов применяется технический растворенный ацетилен марки Б или же вещество в газообразном виде.

Сварка ацетиленом: проверка

Технология сварки данным газом достаточно проста. Однако при работе с веществом требуется терпение и внимательность. Для сварки обычно используют специальные горелки, с маркировкой 0-5. Ее выбор зависит от того, какой толщиной обладают свариваемые детали. Следует учесть, что чем больше размер горелки, тем больше расход.

Сварка ацетиленом осуществляется только после того, как оборудование будет проверено и отрегулировано. При этом следует обратить внимание на номер наконечника и номер подающей газ форсунки, которая располагается около рукоятки горелки под гайкой. Также следует проверить все уплотнения.

Процесс сварки

Применение ацетилена при сварке должно осуществляться аккуратно и в соответствии с определенными правилами. Для начала горелку следует продуть газом. Это нужно делать до тех пор, пока не появится запах ацетилена. После этого газ поджигается. При этом следует добавлять кислород, пока пламя не станет более устойчивым. Из редуктора на выходе давление ацетилена должно быть от 2 до 4 атмосфер, а кислорода - от 2 атмосфер.

Для сварки черных металлов требуется нейтральное пламя. Оно обладает четко очерченной короной и условно его можно разделить на три яркие части: ядро - ярко-голубой окрас с зеленоватым отливом, восстановленное пламя - бледно-голубого оттенка, факел пламени. Последние две зоны являются рабочими.

Перед началом работы все детали нужно очистить, а затем подогнать друг к другу. При работе с горелкой также применяют левый и правый способ. В последнем случае происходит медленное остывание шва. Присадочный материал, как правило, перемещается за горелкой. При левом способе повышается эластичность и прочность шва. В данном случае пламя направляется от места сварки. Присадочный материал следует вносить в сварочную ванну только после того, как переместится на следующую позицию горелка.

Правила безопасности

Применение ацетилена без навыков и опыта запрещено. Существует несколько правил, которые следует соблюдать при работе с веществом:

Что делать, если возник пожар

Неправильное применение ацетилена может привести к печальным последствиям. Этот и приносит сильное разрушение. Что же делать, если возник пожар?

  1. При возникновении пожара следует незамедлительно убрать из опасной зоны все емкости, наполненные ацетиленом. Те баллоны, которые остались, следует постоянно охлаждать обычной водой или же специальным составом. Емкости должны полностью остыть.
  2. Если воспламенился газ, который выходит из баллона, то следует незамедлительно закрыть емкость. Для этого следует использовать неискрящийся ключ. После этого емкость необходимо остудить.
  3. При сильном возгорании тушение огня следует осуществлять только с безопасного расстояния. В такой ситуации стоит использовать огнетушители, наполненные составом, содержащим флегматизирующую концентрацию азота 70 % по объему, также 75 % по объему, песок, струи воды, сжатый азот, полотно асбестовое и так далее.

Ацетилен применяется в промышленности в качестве горючего для газовой сварки и резки металлов, а также в качестве сырья для различных химических производств.

Ацетилен является химическим соединением углерода и водорода. Технический ацетилен представляет собой бесцветный газ с резким характерным запахом. Длительное вдыхание его вызывает головокружение, тошноту и может привести к отравлению. Ацетилен легче воздуха, хорошо растворяется в различных жидкостях. Особенно хорошо он растворяется в ацетоне. Ацетилен при сгорании в смеси с чистым кислородом дает пламя температурой 3050- 3150° С. Он является взрывоопасным газом.

Ацетилен взрывается при следующих условиях:

1) при повышении температуры свыше 500° С и давления свыше 1,5 ат\

2) смесь ацетилена с кислородом при содержании в ней от 2,8 до 93% ацетилена взрывается при атмосферном давлении от искры, пламени, сильного местного нагрева и пр.;

3) при тех же условиях ацетилено-воздушная смесь взрывается при содержании в ней от 2,8 до 80,7% ацетилена;

4) при длительном соприкосновении ацетилена с медью или серебром образуется взрывчатая ацетиленистая медь или ацетиленистое серебро, которые взрываются при ударе или повышении температуры.

Взрыв ацетилена сопровождается резким повышением давления и температуры и может вызвать тяжелые несчастные случаи и значительные разрушения.

При помещении ацетилена в узкие каналы способность его к взрыву при повышении давления значительно понижается. В промышленности ацетилен получают в результате разложения карбида кальция водой в специальных аппаратах - ацетиленовых генераторах. Получающийся таким образом технический ацетилен обычно содержит вредные примеси: сероводород, аммиак, фосфористый водород, кремнистый водород, которые придают ацетилену резкий запах и ухудшают качество сварки. Примеси удаляют из ацетилена путем промывки в воде и химической очистки специальными очистительными веществами. Кроме того, ацетилен может содержать пары воды и механические частицы (известковая и угольная пыль). Для удаления влаги ацетилен подвергается осушке. Очистка от пыли осуществляется матерчатым фильтром. Для сварки ацетилен можно отбирать из ацетиленопровода, идущего от ацетилено-генераторной станции, либо непосредственно от однопостового генератора. Ацетилен может поставляться также в баллонах под давлением 16ат, растворенный в ацетоне.

Кроме ацетилена, при сварке и резке металлов можно применять и другие горючие газы или пары горючих жидкостей: водород, нефтяной газ, пары бензина, керосина и др.

Водород представляет собой горючий газ без цвета и запаха. Водород - один из самых легких газов. Температура пламени при сгорании в кислороде 2300° С. Водород легко загорается и в определенной смеси с кислородом или воздухом дает взрывчатую смесь, которая носит название гремучего газа. Поэтому при производстве работ по сварке и резке водородом необходимо строго соблюдать правила техники безопасности во избежание взрыва. Получают водород путем разложения воды электрическим током. Хранят его и перевозят в стальных баллонах в газообразном виде под давлением 150ат.

Пропан бутановую смесь получают при добыче и переработке естественных нефтяных газов и нефти. Температура пламени при сгорании смеси в кислороде достигает 2100° С.

При небольшом давлении смеси пропана и бутана сжижаются. Хранение и транспортировка их производятся в стальных баллонах емкостью 33 и 45 кг под давлением до 16 ат, заполняемых жидкой смесью до половины объема, так как при нагревании баллона может значительно повыситься давление, что может привести к взрыву баллона. Смесь применяется для резки, пайки, закалки, сварки свинца, алюминия и стали небольшой толщины.

Нефтяной газ представляет собой смесь горючих газов, обладает неприятным запахом, бесцветен. Получается при переработке нефти и нефтепродуктов. Температура пламени при сгорании в кислороде 2300° С. Хранится и перевозится в газообразном состоянии в баллонах под давлением 150 ат. При этом давлении он частично сжижается. В установке для резки и сварки нефтяным газом требуется испаритель. Применяется для резки, пайки, закалки, сварки стали толщиной до 2-3 мм, сварки латуни, свинца, алюминия.

Коксовый газ - газообразная смесь горючих продуктов, получающихся на коксохимических заводах при выработке из углей кокса. Температура пламени при сгорании в кислороде - около 2000° С.

Доставляется к месту сварки по газопроводу или в баллонах под давлением 150ат. Коксовые газы загрязнены цианистыми соединениями, которые могут привести к отравлениям. Поэтому перед применением их тщательно очищают. Применяется для резки, пайки и сварки легкоплавких металлов.

Метан при нормальной температуре и давлении представляет собой бесцветный газ. Метан в больших количествах находится в естественных газах, где содержание его доходит до 95-98%, температура пламени при сгорании в кислороде 1850° С для дашавского и 2000° С для саратовского газа.

На места потребления природные газы, как правило, подаются по трубопроводам и сравнительно редко производится транспортировка в газообразном состоянии в баллонах под давлением 150ат. Применяется для сварки легкоплавких металлов, резки и пайки.

Городской газ (московский) является смесью коксового, нефтяного и природных газов. Получается при газификации твердого топлива. Температура пламени при сгорании в кислороде - около 2000° С.

На места потребления для резки и сварки легкоплавких металлов подается по газопроводам или в сжатом виде в баллонах под давлением 150ат.

Бензин представляет собой легко испаряющуюся прозрачную жидкость. Пары бензина при сгорании в кислороде дают температуру 2400° С. Бензин получается при переработке нефти. Хранится и перевозится в жидком виде в сосудах при атмосферном давлении. Для сварки и резки применяется специальная аппаратура. Бензин чаще применяется для резки, чем для сварки.

Керосин для газопламенной обработки используется, как и бензин, в виде паров. С этой целью применяются специальные горелки и резаки, снабженные испарителями. Керосинокислородное пламя имеет более низкую температуру (2700°С), чем бензинокислородное. Тем не менее керосин широко применяется при газовой резке.

Следует иметь в виду, что все рассмотренные газы, а также пары бензина являются взрывоопасными.

Бесцветный газ, слаборастворимый в воде, несколько легче атмосферного воздуха, относящийся к классу алкинов и представляющий собой ненасыщенный углерод называют ацетиленом. В его структуре все атомы имеют между собой тройную связь. Это вещество закипает при температуре — 830 °С. Формула ацетилена говорит о том, что в его состав входят только углерод и водород.

Ацетилен – это опасное вещество, которое при неаккуратном обращении с ним может взорваться. Именно поэтому для хранения этого вещества используют специально оснащенные емкости. Газ при соединении с кислородом горит, и температура может достигать 3150 °С.

Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС 2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).

В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.

Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.

Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.

Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.

Электрический крекинг

Превращение метана в ацетилен происходит в электродуговой печи, при этом ее нагревают до температуры в 2000-3000 °С. При этом, напряжение на электродах достигает 1 кВ. Метан разогревают до 1600 °С. Для получения одной тонны ацетилена необходимо затратить 13 000 кВт×ч. Это существенный недостаток производства формулы ацетилена.

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Преимущества

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Формула ацетилена

Ацетилен имеет простую формулу — С 2 Н 2 . Относительно дешевый способ его получения путем перемешивания воды и карбида кальция сделал его самым применяемым газом для соединения металлов. Температура с которой горит смесь кислорода и ацетилена вынуждает выделяться твердые частицы углерода.

Ацетилен можно доставить к месту выполнения работ в специальных емкостях (газовых баллонах), а можно получить его непосредственно на рабочем месте используя для этого специально сконструированный реактор. Где происходит смешивание воды и карбида кальция.

Химические и физические свойства

Некоторые химические свойства

Свойства ацетилена во многом определены его формулой. То есть наличием атомов углерода и водорода связанных между собой.

Смешивание ацетилена с водой, при добавлении катализаторов типа солей ртути, приводит к получению уксусного альдегида. Тройная связь атомов, содержащихся в молекуле ацетилена приводит к тому, что при сгорании она выделяет 14 000 ккал/куб. м. В процессе сгорания температура поднимается до 3000 °C.

Этот газ, при соблюдении определенных условий, может превращаться в бензол. Для этого необходимо разогреть его до 4000 °С и добавить графит.

Молярная масса ацетилена составляет 26,04 г/моль. Плотность ацетилена 1,1 кг/м³.

Физические свойства

В стандартных условиях ацетилен представляет собой бесцветный газ, который практически не растворяется в воде. Он начинает кипеть в -830 °С. При сжимании он начинает разлагаться с выделением большого количества энергии. Поэтому для его хранения применяют стальные баллоны способные хранить газ под высоким давлением.

Этот газ недопустимо выпускать в атмосферу. Его формула может отрицательно сказываться на окружающей среде.

Технология и режимы сварки

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.



Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм 3 /час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4. То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3. Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм 3 /час, при правом 650-750 дм 3 /час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Виды ацетилена

Промышленность выпускает два вида ацетилена — твердый и в виде газа.

Газообразный

Ацетилен обладает резким запахом и это дает определённые преимущества при его утечке. По своей массе он близок к атмосферному воздуху.

Жидкий

Жидкий ацетилен не обладает ни каким цветом. У него есть одна особенность он преломляет цвет. Ацетилен и жидкий, и газообразный, представляет собой опасное вещество. То есть при нарушении правил обращения с ним взрыв может произойти в любую секунду, даже при комнатной температуре. Для повышения безопасности при обращении с ним, применяют так называемую флегматизацией. То есть в ёмкости, предназначенной для хранения ацетилена размещают пористое вещество. Которое снижает его опасность

Реакции ацетилена

Ацетилен вступает в реакцию с различными соединениями, например, солями меди и серебра. В результате таких взаимодействий получают вещества под названием ацетилениды. Их отличительная черта — взрывоопасность.


Горение ацетилена

Реакция полимеризации

Использование ацетилена

Кроме сварки ацетилен применяют в следующих случаях:


Стандарты

Производители ацетилена руководствуются при его получении требованиями ГОСТ 5457-75. В нем определены требования к газообразному и жидкому ацетилену.

Скачать ГОСТ 5457-75