Домашний очаг

Эволюция звезд с точки зрения точной науки и теории относительности. Жизненный цикл звезды - описание, схема и интересные факты

Рассмотрим кратко основные этапы эволюции звезд.

Изменение физических характеристик, внутреннего строения и химического состава звезды со временем.

Фрагментация вещества. .

Предполагается, что звезды образуются при гравитационном сжатии фрагментов газопылевого облака. Так, местами звездообразования могут являться так называемые глобулы.

Глобула - плотное непрозрачное молекулярно-пылевое (газопылевое) межзвездное облако, которое наблюдается на фоне светящихся облаков газа и пыли в виде темного круглого образования. Состоит преимущественно из молекулярного водорода (H 2) и гелия (He ) с примесью молекул других газов и твердых межзвездных пылинок. Температура газа в глобуле (в основном, температура молекулярного водорода) T ≈ 10 ÷ 50К, средняя плотность n ~ 10 5 частиц/см 3 , что на несколько порядков больше, нежели в самых плотных обычных газопылевых облаках, диаметр D ~ 0,1 ÷ 1 . Масса глобул М ≤ 10 2 × M ⊙ . В некоторых глобулах наблюдаются молодые типа T Тельца.

Облако сжимается под действием собственной гравитации из-за гравитационной неустойчивости, которая может возникнуть либо самопроизвольно, либо как результат взаимодействия облака с ударной волной от сверхзвукового потока звездного ветра от находящегося неподалеку другого источника звездообразования. Возможны и другие причины возникновения гравитационной неустойчивости.

Теоретические исследования показывают, что в условиях, которые существуют в обычных молекулярных облаках (T ≈ 10 ÷ 30К и n ~ 10 2 частиц/см 3), первоначальное может происходить в объемах облака с массой М ≥ 10 3 × M ⊙ . В таком сжимающемся облаке возможен дальнейший распад на менее массивные фрагменты, каждый из которых будет также сжиматься под действием собственной гравитации. Наблюдения показывают, что в Галактике в процессе звездообразования рождается не одна , а группа звезд с разными массами, например, рассеянное звездное скопление.

При сжатии в центральных районах облака плотность возрастает, в результате чего наступает момент, когда вещество этой части облака становится непрозрачным к собственному излучению. В недрах облака возникает устойчивое плотное сгущение, которое астрономы называют ой.

Фрагментация вещества – распад молекулярно-пылевого облака на более ме ие части, дальнейшее которых приводит к появлению .

– астрономический объект, находящийся в стадии , из которого спустя некоторое время (для солнечной массы это время T ~ 10 8 лет) образуется нормальная .

При дальнейшем падении вещества из газовой оболочки на ядро (аккреция) масса последнего, а следовательно, температура и увеличиваются настолько, что газовое и лучистое давление сравниваются с силами . Сжатие ядра останавливается. Формирующаяся окружена непрозрачной для оптического излучения газопылевой оболочкой, пропускающей наружу лишь инфракрасное и более длинноволновое излучение. Такой объект ( -кокон) наблюдается как мощный источник радио и инфракрасного излучений.

При дальнейшем росте массы и температуры ядра световое давление останавливает аккрецию, а остатки оболочки рассеиваются в космическом пространстве. Появляется молодая , физические характеристики которой зависят от ее массы и начального химического состава.

Основным источником энергии рождающейся звезды является, по-видимому, энергия, высвобождающаяся при гравитационном сжатии. Это предположение следует из теоремы вириала: в стационарной системе сумма потенциальной энергии E п всех членов системы и удвоенной кинетической энергии 2 E к этих членов равна нулю:

E п + 2 E к = 0. (39)

Теорема справедлива для систем частиц, движущихся в ограниченной области пространства под действием сил, величина которых обратно пропорциональна квадрату расстояния между частицами. Отсюда следует, что тепловая (кинетическая) энергия равна половине гравитационной (потенциальной) энергии. При сжатии звезды полная энергия звезды уменьшается, при этом уменьшается гравитационная энергия: половина изменения гравитационной энергии уходит от звезды через излучение, за счет второй половины увеличивается тепловая энергия звезды.

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны; процесс конвекции охватывает все области светила. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за . Пока ещё не установлено, звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая приближается к главной последовательности.

По мере сжатия звезды начинает увеличиваться давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста центральной температуры, вызываемого сжатием, а затем и к её понижению. Для звёзд меньше 0,0767 масс Солнца этого не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и . Такие «недозвёзды» излучают энергии больше, чем образуется в ходе ядерных реакций, и относятся к так называемым ; их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся ядерных реакций .

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Звезды с массой больше 8 солнечных масс уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, чтобы они компенсировали потери энергии на излучение, пока накапливалась масса ядра. У этих звёзд истечение массы и настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отта ивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака.

Главная последовательность

Температура звезды растет, пока в центральных областях не достигнет значений, достаточных для включения термоядерных реакций, которые затем становятся главным источником энергии звезды. Для массивных звезд (M > 1 ÷ 2 × M ⊙ ) – это «сгорание» водорода в углеродном цикле; для звезд с массой, равной или меньшей массы Солнца, энергия выделяется в протон-протонной реакции. переходит в стадию равновесия и занимает свое место на главной последовательности диаграммы Герцшпрунга-Рессела: у звезды большой массы температура в ядре очень высокая (T ≥ 3 × 10 7 K ), выработка энергии весьма интенсивна, – на главной последовательности занимает место выше Солнца в области ранних (O … A , (F )); у звезды небольшой массы температура в ядре сравнительно невысока (T ≤ 1,5 × 10 7 K ), выработка энергии не столь интенсивна, – на главной последовательности занимает место рядом или ниже Солнца в области поздних ((F ), G , K , M ).

На главной последовательности проводит до 90% времени, отпущенного природой на ее существование. Время нахождения звезды на стадии главной последовательности также зависит от массы. Так, с массой M ≈ 10 ÷ 20 × M ⊙ O или B находится в стадии главной последовательности около 10 7 лет, в то время как красный карлик K 5 с массой M ≈ 0,5 × M ⊙ находится в стадии главной последовательности около 10 11 лет, то есть время, сравнимое с возрастом Галактики. Массивные горячие звезды быстро переходят в следующие этапы эволюции, холодные карлики находятся в стадии главной последовательности все время существования Галактики. Можно предположить, что красные карлики являются основным типом населения Галактики.

Красный гигант (сверхгигант).

Быстрое выгорание водорода в центральных районах массивных звезд приводит к появлению у них гелиевого ядра. При доле массы водорода в несколько процентов в ядре практически полностью прекращается углеродная реакция превращения водорода в гелий. Ядро сжимается, что приводит к увеличению его температуры. В результате разогрева, вызванного гравитационным сжатием гелиевого ядра, «загорается» водород и начинается энерговыделение в тонком слое, расположенном между ядром и протяженной оболочкой звезды. Оболочка расширяется, радиус звезды увеличивается, эффективная температура уменьшается, растет. «уходит» с главной последовательности и переходит в следующую стадию эволюции – в стадию красного гиганта или, если масса звезды M > 10 × M ⊙ , в стадию красного сверхгиганта.

С ростом температуры и плотности в ядре начинает «гореть» гелий. При T ~ 2 × 10 8 K и r ~ 10 3 ¸ 10 4 г/см 3 начинается термоядерная реакция, которая называется тройным a -процессом: из трех a -частиц (ядер гелия 4 He ) образуется одно устойчивое ядро углерода 12 C . При массе ядра звезды M < 1,4 × M ⊙ тройной a -процесс приводит к взрывному характеру энерговыделения - гелиевой вспышке, которая для конкретной звезды может повторяться неоднократно.

В центральных областях массивных звезд, находящихся в стадии гиганта или сверхгиганта, увеличение температуры приводит к последовательному образованию углеродного, углеродно-кислородного и кислородного ядер. После выгорания углерода наступают реакции, в результате которых образуются более тяжелые химические элементы, возможно и ядра железа. Дальнейшая эволюция массивной звезды может привести к сбросу оболочки, вспышке звезды как Новой или , с последующим образованием объектов, которые являются заключительной стадией эволюции звезд: белого карлика, нейтронной звезды или черной дыры.

Завершающая стадия эволюции – стадия эволюции всех нормальных звезд после исчерпания этими ми термоядерного горючего; прекращение термоядерных реакций как источника энергии звезды; переход звезды в зависимости от ее массы в стадию белого карлика, или черной дыры.

Белые карлики - последняя стадия эволюции всех нормальных звезд с массой M < 3 ÷ 5 × M ⊙ после исчерпания этими ми термоядерного горючего. Пройдя стадию красного гиганта (или субгиганта), такая сбрасывает оболочку и оголяет ядро, которое, остывая, и становится белым карликом. Небольшой радиус (R б.к ~ 10 -2 × R ⊙ ) и белый или бело-голубой цвет (T б.к ~ 10 4 К) определили название этого класса астрономических объектов. Масса белого карлика всегда меньше 1,4 × M ⊙ - доказано, что белые карлики с большими массами существовать не могут. При массе, сравнимой с массой Солнца, и размерах, сравнимых с размерами больших планет Солнечной системы, белые карлики обладают огромной средней плотностью: ρ б.к ~ 10 6 г/см 3 , то есть гирька объемом 1 см 3 вещества белого карлика весит тонну! Ускорение свободного падения на поверхности g б.к ~ 10 8 см/с 2 (сравни с ускорением на поверхности Земли - g з ≈ 980 см/с 2). При такой гравитационной нагрузке на внутренние области звезды равновесное состояние белого карлика поддерживается давлением вырожденного газа (в основном, вырожденного электронного газа, так как вклад ионной компоненты мал). Напомним, что вырожденным называется газ, в котором отсутствует максвелловское распределение частиц по скоростям. В таком газе при определенных значениях температуры и плотности число частиц (электронов), имеющих любую скорость в пределах от v = 0 до v = v max , будет одинаковым. v max определяется плотностью и температурой газа. При массе белого карлика M б.к > 1,4 × M ⊙ максимальная скорость электронов в газе сравнима со скоростью света, вырожденный газ становится релятивистским и его давление уже неспособно противостоять гравитационному сжатию. Радиус карлика стремится к нулю - “схлопывается” в точку.

Тонкие горячие атмосферы белых карликов состоят либо из водорода, при этом других элементов в атмосфере практически не обнаруживается; либо из гелия, при этом водорода в атмосфере в сотни тысяч раз меньше, нежели в атмосферах нормальных звезд. По виду спектра белые карлики относятся к спектральным классам O, B, A, F. Чтобы “отличить” белые карлики от нормальных звезд, перед обозначением ставится буква D (DOVII, DBVII и т.д. D - первая буква в английском слове Degenerate - вырожденный). Источником излучения белого карлика является запас тепловой энергии, который белый карлик получил, будучи ядром звезды-родительницы. Многие белые карлики получили в наследство от родительницы и сильное магнитное поле, напряженность которого H ~ 10 8 Э. Полагают, что число белых карликов составляет около 10% от общего числа звезд Галактики.

На рис. 15 приведена фотография Сириуса - ярчайшей звезды неба (α Большого Пса; m v = -1 m ,46; класс A1V). Видимый на снимке диск является следствием фотографической иррадиации и дифракции света на объективе телескопа, то есть диск самой звезды на фотографии не разрешается. Лучи, идущие от фотографического диска Сириуса, - следы искажения волнового фронта светового потока на элементах оптики телескопа. Сириус находится на расстоянии 2,64 от Солнца, свет от Сириуса идет до Земли 8,6 лет - таким образом, это одна из самых близких к Солнцу звезд. Сириус в 2,2 раза массивнее Солнца; его M v = +1 m ,43, то есть наш сосед излучает энергии в 23 раза больше, нежели Солнце.

Рисунок 15.

Уникальность фотографии заключается в том, что вместе с изображением Сириуса удалось получить изображение его спутника – спутник яркой точкой “светится” слева от Сириуса. Сириус – телескопически : сам Сириус обозначается буквой А, а его спутник буквой В. Видимая звездная величина Сириуса В m v = +8 m ,43, то есть он почти в 10 000 раз слабее Сириуса А. Масса Сириуса В почти точно равна массе Солнца, радиус около 0,01 радиуса Солнца, температура поверхности около 12000К, однако излучает Сириус В в 400 раз меньше Солнца. Сириус В - типичный белый карлик. Более того, это первый белый карлик, обнаруженный, кстати, Альвеном Кларком в 1862 г при визуальном наблюдении в телескоп.

Сириус А и Сириус В обращаются вокруг общего с периодом 50 лет; расстояние между компонентами А и В всего 20 а.е.

По меткому замечанию В.М.Липунова, ““вызревают” внутри массивных звезд (с массой более 10 × M ⊙ )”. Ядра звезд, эволюционирующих в нейтронную звезду, имеют 1,4 × M ⊙ ≤ M ≤ 3 × M ⊙ ; после того, как иссякнут источники термоядерных реакций и -родительница вспышкой сбросит значительную часть вещества, эти ядра станут самостоятельными объектами звездного мира, обладающими весьма специфическими характеристиками. Сжатие ядра звезды-родительницы останавливается при плотности, сравнимой с ядерной (ρ н . з ~ 10 14 ÷ 10 15 г/см 3). При таких массе и плотности радиус родившейся всего 10 состоит из трех слоев. Наружный слой (или внешняя кора) образован кристаллической решеткой из атомных ядер железа (Fe ) с возможной небольшой примесью атомных ядер других металлов; толщина внешней коры всего около 600 м при радиусе 10 км. Под внешней корой находится еще одна внутренняя твердая кора, состоящая из атомов железа (Fe ), но эти атомы переобогащены нейтронами. Толщина этой коры 2 км. Внутренняя кора граничит с жидким нейтронным ядром, физические процессы в котором определяются замечательными свойствами нейтронной жидкости - сверхтекучестью и, при наличии в ней свободных электронов и протонов, сверхпроводимостью. Возможно, что в самом центре вещество может содержать мезоны и гипероны.

Быстро вращаются вокруг оси - от одного до сотен оборотов в секунду. Такое вращение при наличии магнитного поля (H ~ 10 13 ÷ 10 15 Э) часто приводит к наблюдаемому эффекту пульсации излучения звезды в разных диапазонах электромагнитных волн. Один из таких пульсаров мы видели внутри Крабовидной туманности.

Общее число скорость вращения уже недостаточна для эжекции частиц, поэтому такая не может быть радиопульсаром. Однако она всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду не может упасть, то есть аккреция вещества не происходи.

Аккретор (рентгеновский пульсар). Скорость вращения снижается до такой степени, что веществу теперь ничего не мешает падать на такую нейтронную звезду. Плазма, падая, движется по линиям магнитного поля и ударяется о твёрдую поверхность в районе полюсов , разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, светится в рентгеновском диапазоне. Область, в которой происходит сто новение падающего вещества с поверхностью звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюдатель воспринимает как пульсации. Такие объекты называются рентгеновскими пульсарами.

Георотатор. Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией.

Если является компонентой тесной двойной системы, то происходит “перекачка” вещества от нормальной звезды (второй компоненты) на нейтронную. Масса может превысить критическую (M > 3 × M ⊙ ), тогда нарушается гравитационная устойчивость звезды, уже ничто не может противостоять гравитационному сжатию, и “уходит” под свой гравитационный радиус

r g = 2 × G × M/c 2 , (40)

превращаясь в “черную дыру“. В приведенной формуле для r g: M - масса звезды, c - скорость света, G - гравитационная постоянная.

Черная дыра - объект, поле тяготения которого настолько велико, что ни частица, ни фотон, ни любое материальное тело не могут достигнуть второй космической скорости и вырваться во внешнее пространство.

Черная дыра является сингулярным объектом в том смысле, что характер протекания физических процессов внутри ее пока недоступен теоретическому описанию. Существование черных дыр следует из теоретических соображений, реально они могут находиться в центральных районах шаровых скоплений, квазаров, гигантских галактик, в том числе, и в центре Нашей галактики.

  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    4. Эволюция звезд Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек. Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых "ассоциаций") в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных "радиоизображений" некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии "зоны HII", т. е. облака ионизованного межзвездного газа. В гл. 3 уже говорилось, что причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых (см. ниже). Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4х10 33 эрг, а за 3 млрд лет оно излучило 4х10 50 эрг. Несомненно, что возраст Солнца около 5 млрд лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце "моложе" Земли. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Как мы увидим ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени. Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов). В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода. Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие "протозвезды" наблюдаются в отдельных Туманностях в виде очень темных компактных образований, так называемых глобул (рис. 12). Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения (см. ниже). Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты (см. гл. 9).

    Рис. 12. Глобулы в диффузионной туманности

    При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы егo поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр - светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс. В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет, вследствие чего спектр становится все более "ранним". Таким образом, двигаясь по диаграмме "спектр - светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой. Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно погруженные в темные туманности. В 1966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Мы уже упоминали в третьей главе этой книги об открытии методом радиоастрономии ряда молекул в межзвездной среде, прежде всего гидроксила ОН и паров воды Н2О. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т. е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих оптических "братьев" - "небулия" и "корония". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам - "небулию" и "коронию". Не будем снисходительно улыбаться над невежеством астрономов начала нашего века: ведь теории атома тогда еще не было! Развитие физики не оставило в периодической системе Менделеева места для экзотических "небожителей": в 1927 г. был развенчан "небулий", линии которого с полной надежностью были отождествлены с "запрещенными" линиями ионизованных кислорода и азота, а в 1939 -1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция. Если для "развенчания" "небулия" и "кодония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях. Дальнейшие наблюдения, прежде всего, выявили, что источники "мистериума" имеют исключительно малые угловые размеры. Это было показано с помощью тогда еще нового, весьма эффективного метода исследовании, получившего название "радиоинтерферометрия на сверхдлинных базах". Суть метода сводится к одновременным наблюдениям источников на двух радиотелескопах, удаленных друг от друга на расстояния в несколько тысяч км. Как оказывается, угловое разрешение при этом определяется отношением длины волны к расстоянию между радиотелескопами. В нашем случае эта величина может быть ~3х10 -8 рад или несколько тысячных секунды дуги! Заметим, что в оптической астрономии такое угловое разрешение пока совершенно недостижимо. Такие наблюдения показали, что существуют по крайней мере три класса источников "мистериума". Нас здесь будут интересовать источники 1 класса. Всё они находятся внутри газовых ионизованных туманностей, например в знаменитой туманности Ориона. Как уже говорилось, их размеры чрезвычайно малы, во много тысяч раз меньше размеров туманности. Всего интереснее, что они обладают сложной пространственной структурой. Рассмотрим, например, источник, находящийся в туманности, получившей название W3.

    Рис. 13. Профили четырех компонент линии гидроксила

    На рис. 13 приведен профиль линии ОН, излучаемый этим источником. Как видим, он состоит из большого количества узких ярких линий. Каждой линии соответствует определенная скорость движения по лучу зрения излучающего эту линию облака. Величина этой скорости определяется эффектом Доплера. Различие скоростей (по лучу зрения) между различными облаками достигает ~10 км/с. Упомянутые выше интерферометрические наблюдения показали, что облака, излучающие каждую линию, пространственно не совпадают. Картина получается такая: внутри области размером приблизительно 1,5 секунды дуги движутся с разными скоростями около 10 компактных облаков. Каждое облако излучает одну определенную (по частоте) линию. Угловые размеры облаков очень малы, порядка нескольких тысячных секунды дуги. Так как расстояние до туманности W3 известно (около 2000 пк), то угловые размеры легко могут быть переведены в линейные. Оказывается, что линейные размеры области, в которой движутся облака, порядка 10 -2 пк, а размеры каждого облака всего лишь на порядок величины больше расстояния от Земли до Солнца. Возникают вопросы: что это за облака и почему они так сильно излучают в радиолиниях гидроксила? На второй вопрос ответ был получен довольно скоро. Оказалось, что механизм излучения вполне подобен тому, который наблюдался в лабораторных мазерах и лазерах. Итак, источники "мистериума" - это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах - в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров пока еще окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом "накачки" могут быть некоторые химические реакции. Стоит прервать наш рассказ о космических мазерах для того, чтобы подумать, с какими удивительными явлениями сталкиваются астрономы в космосе. Одно из величайших технических изобретений нашего бурного века, играющее немалую роль в переживаемой нами теперь научно-технической революции, запросто реализуется в естественных условиях и притом - в громадном масштабе! Поток радиоизлучения от некоторых космических мазеров настолько велик, что мог бы быть обнаружен даже при техническом уровне радиоастрономии лет 35 тому назад, т. е. еще до изобретения мазеров и лазеров! Для этого надо было "только" знать точную длину волны радиолинии ОН и заинтересоваться проблемой. Кстати, это не первый случай, когда в естественных условиях реализуются важнейшие научно-технические проблемы, стоящие перед человечеством. Термоядерные реакции, поддерживающие излучение Солнца и звезд (см. ниже), стимулировали разработку и осуществление проектов получения на Земле ядерного "горючего", которое в будущем должно решить все наши энергетические проблемы. Увы, мы пока еще далеки от решения этой важнейшей задачи, которую природа решила "запросто". Полтора века тому назад основатель волновой теории света Френель заметил (по другому поводу, конечно): "Природа смеется над нашими трудностями". Как видим, замечание Френеля еще более справедливо в наши дни. Вернемся, однако, к космическим мазерам. Хотя механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 10 8 -10 9 частиц, причем существенная (а может быть и большая) часть их - молекулы. Температура вряд ли превышает две тысячи кельвинов, скорее всего она порядка 1000 Кельвинов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд - сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды (см. ниже). Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно. Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции -различна: для более массивных сгустков она будет больше (см. дальше табл. 2). Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего - сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами)... Спустя 2 года после открытия космических мазеров на гидроксиле (линия 18 см) - было установлено, что те же источники одновременно излучают (также мазерным механизмом) линию водяных паров, длина волны которой 1,35 см. Интенсивность "водяного" мазера даже больше, чем "гидроксильного". Облака, излучающие линию Н2О, хотя и находятся в том же малом объеме, что и "гидроксильные" облака, движутся с другими скоростями и значительно более компактны. Нельзя исключать, что в близком будущем будут обнаружены и другие мазерные линии * . Таким образом, совершенно неожиданно радиоастрономия превратила классическую проблему звездообразования в ветвь наблюдательной астрономии ** . Оказавшись на главной последовательности и перестав сжиматься, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр - светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр-светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности. Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10-15 млрд лет. Ниже приводится табл. 2, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах.

    Таблица 2


    лет

    Спектральный класс

    Светимость

    гравитационного сжатия

    пребывания на главной после-довательности

    G2 (Солнце)

    Из таблицы следует, что время пребывания на главной последовательности звезд, более "поздних", чем КО, значительно больше возраста Галактики, который по существующим оценкам близок к 15-20 млрд лет. "Выгорание" водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается, на диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд. Если представить себе группу одновременно образовавшихся эволюционирующих звезд, то с течением времени главная последовательность на диаграмме "спектр-светимость", построенная для этой группы, будет как бы загибаться вправо. Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств, на которых мы здесь останавливаться не можем. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость. На рис. 14 приведены теоретически рассчитанные эволюционные треки на диаграмме "светимость - температура поверхности" для звезд разной массы. При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается. Для проверки теории большое значение имеет построение диаграммы "спектр - светимость" для отдельных звездных скоплений. Дело в том, что звезды одного и того же скопления (например. Плеяды) имеют, очевидно, одинаковый возраст. Сравнивая диаграммы "спектр - светимость" для разных скоплений - "старых" и "молодых", можно выяснить, как эволюционируют звезды. На рис. 15 и 16 приведены диаграммы "показатель цвета - светимостью для двух различных звездных скоплений. Скопление NGC 2254 - сравнительно молодое образование.

    Рис. 14. Эволюционные треки для звезд разной массы на диаграмме "светимость-температура"

    Рис. 15. Диаграмма Герцшпрунга - Рессела для звездного скопления NGC 2254


    Рис. 16. Диаграмма Герцшпрунга - Рессела для шарового скопления М 3. По вертикальной оси - относительная звездная величина

    На соответствующей диаграмме отчетливо видна вся главная последовательность, в том числе ее верхняя левая часть, где расположены горячие массивные звезды (показателю-цвета - 0,2 соответствует температура 20 тыс. К, т.е. спектр класса В). Шаровое скопление М 3 - "старый" объект. Ясно видно, что в верхней части главной последовательности диаграммы, построенной для этого скопления, звезд почти нет. Зато ветвь красных гигантов у М 3 представлена весьма богато, в то время как у NGC 2254 красных гигантов очень мало. Это и понятно: у старого скопления М 3 большое число звезд уже успело "сойти" с главной последовательности, в то время как у молодого скопления NGC 2254 это произошло только с небольшим числом сравнительно массивных, быстро эволюционирующих звезд. Обращает на себя внимание, что ветвь гигантов для М 3 идет довольно круто вверх, а у NGC 2254 она - почти горизонтальна. С точки зрения теории это можно объяснить значительно более низким содержанием тяжелых элементов у М 3. И действительно, у звезд шаровых скоплений (так же как и у других звезд, концентрирующихся не столько к галактической плоскости, сколько к галактическому центру) относительное содержание тяжелых элементов незначительно. На диаграмме "показатель цвета - светимость" для М 3 видна еще одна почти горизонтальная ветвь. Аналогичной ветви на диаграмме, построенной для NGC 2254, нет. Теория объясняет появление этой ветви следующим образом. После того как температура сжимающегося плотного гелиевого ядра звезды - красного гиганта - достигнет 100-150 млн К, там начнет идти новая ядерная реакция. Эта реакция состоит в образовании ядра углерода из трех ядер гелия. Как только начнется эта реакция, сжатие ядра прекратится. В дальнейшем поверхностные слои

    звезды увеличивают свою температуру и звезда на диаграмме "спектр - светимость" будет перемещаться влево. Именно из таких звезд образуется третья горизонтальная ветвь диаграммы для М 3.

    Рис. 17. Сводная диаграмма Герцшпрунга - Рессела для 11 звездных скоплений

    На рис. 17 схематически приведена сводная диаграмма "цвет - светимость" для 11 скоплений, из которых два (М 3 и М 92) шаровые. Ясно видно, как "загибаются" вправо и вверх главные последовательности у разных скоплений в полном согласии с теоретическими представлениями, о которых уже шла речь. Из рис. 17 можно сразу определить, какие скопления являются молодыми и какие старыми. Например, "двойное" скопление Х и h Персея молодое. Оно "сохранило" значительную часть главной последовательности. Скопление М 41 старше, еще старше скопление Гиады и совсем старым является скопление М 67, диаграмма "цвет - светимость" для которого очень похожа на аналогичную диаграмму для шаровых скоплений М 3 и М 92. Только ветвь гигантов у шаровых скоплений находится выше в согласии с различиями в химическом составе, о которых говорилось раньше. Таким образом, данные наблюдений полностью подтверждают и обосновывают выводы теории. Казалось бы, трудно ожидать наблюдательной проверки теории процессов в звездных недрах, которые закрыты от нас огромной толщей звездного вещества. И все же теория и здесь постоянно контролируется практикой астрономических наблюдений. Нужно отметить, что составление большого количества диаграмм "цвет - светимость" потребовало огромного труда астрономов-наблюдателей и коренного усовершенствования методов наблюдений. С другой стороны, успехи теории внутреннего строения и эволюции звезд были бы невозможны без современной вычислительной техники, основанной на применении быстродействующих электронных счетных машин. Неоценимую услугу теории оказали также исследования в области ядерной физики, позволившие получить количественные характеристики тех ядерных реакций, которые протекают в звездных недрах. Без преувеличения можно сказать, что разработка теории строения и эволюции звезд является одним из крупнейших достижений астрономии второй половины XX столетия. Развитие современной физики открывает возможность прямой наблюдательной проверки теории внутреннего строения звезд, и в частности Солнца. Речь идет о возможности обнаружения мощного потока нейтрино, который должно испускать Солнце, если в его недрах имеют место ядерные реакции. Хорошо известно, что нейтрино чрезвычайно слабо взаимодействует с другими элементарными частицами. Так, например, нейтрино может почти без поглощения пролететь через всю толщу Солнца, в то время как рентгеновское излучение может пройти без поглощения только через несколько миллиметров вещества солнечных недр. Если представить себе, что через Солнце проходит мощный пучок нейтрино с энергией каждой частицы в

    В начале XX века, Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» - «спектральный класс» различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название диаграмма Герцшпрунга - Рассела) оказалась ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

    Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу. Особенно для спектральных классов O-F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.

    Большинство звезд (около 90 %), располагаются на диаграмме вдоль длинной узкой полосы, называемой главной последовательностью . Она протянулась из верхнего левого угла (от голубых сверхгигантов) в нижний правый угол (до красных карликов). К звездам главной последовательности относится Солнце, светимость которого принимают за единицу.

    Точки, соответствующие гигантам и сверхгигантам, располагаются над главной последовательностью справа, а соответствующие белым карликам – в нижнем левом углу, под главной последовательностью.

    В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. Параллельно главной последовательности, но несколько ниже ее располагаются субкарлики . Они отличаются от звезд главной последовательности меньшим содержанием металлов.

    Большую часть своей жизни звезда проводит на главной последовательности. В этот период ее цвет, температура, светимость и другие параметры почти не меняются. Но до того, как звезда достигнет этого устойчивого состояния, еще в состоянии протозвезды, она имеет красный цвет и в течение короткого времени большую светимость, чем будет иметь на главной последовательности.

    Звезды большой массы (сверхгиганты) щедро расходуют свою энергию, и эволюция таких звезд продолжается всего сотни миллионов лет. Поэтому голубые сверхгиганты являются молодыми звездами.

    Стадии эволюции звезды после главной последовательности также короткие. Типичные звезды становятся при этом красными гигантами, очень массивные звезды – красными сверхгигантами. Звезда быстро увеличивается в размере, и ее светимость возрастает. Именно эти фазы эволюции отражаются на диаграмме Герцшпрунга-Рассела.

    Каждая звезда проводит на главной последовательности около 90% времени своей жизни. В этот период основными источниками энергии звезды являются термоядерные реакции превращения водорода в гелий в её центре. Исчерпав данный источник, звезда смещается в область гигантов, где проводит около 10% времени своей жизни. В это время основным источником выделения энергии звезды является превращение водорода в гелий в слое, окружающем плотное гелиевое ядро. Это так называемая стадия красного гиганта .

    Рождение звезд

    Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью, в котором в результате гравитационной неустойчивости первичная флуктуация плотности начинает разрастаться. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000-10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

    При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формированиях газ нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, трансформируясь во вращающийся сферический объект.

    Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздообразующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образования получили название глобул Бока.

    Очень малая доля протозвёзд не достигает достаточной для реакций термоядерного синтеза температуры. Такие звёзды получили название «коричневые карлики», их масса не превышает одной десятой солнечной. Такие звёзды быстро умирают, постепенно остывая за несколько сотен миллионов лет. В некоторых наиболее массивных протозвёздах температура из-за сильного сжатия может достигнуть 10 миллионов К, делая возможным синтез гелия из водорода. Такая звезда начинает светиться. Начало термоядерных реакций устанавливает гидростатическое равновесие, предотвращая ядро от дальнейшего гравитационного коллапса. Далее звезда может существовать в стабильном состоянии.

    Начальная стадия эволюции звёзд

    На диаграмме Герцшпрунга - Рассела появившаяся звезда занимает точку в правом верхнем углу: у неё большая светимость и низкая температура. Основное излучение происходит в инфракрасном диапазоне. До нас доходит излучение холодной пылевой оболочки. В процессе эволюции положение звезды на диаграмме будет меняться. Единственным источником энергии на этом этапе служит гравитационное сжатие. Поэтому звезда достаточно быстро перемещается параллельно оси ординат.

    Температура поверхности не меняется, а радиус и светимость уменьшаются. Температура в центре звезды повышается, достигая величины, при которой начинаются реакции с лёгкими элементами: литием, бериллием, бором, которые быстро выгорают, но успевают замедлить сжатие. Трек поворачивается параллельно оси ординат, температура на поверхности звезды повышается, светимость остаётся практически постоянной. Наконец, в центре звезды начинаются реакции образования гелия из водорода (горение водорода). Звезда выходит на главную последовательность.

    Продолжительность начальной стадии определяется массой звезды. Для звёзд типа Солнца она около 1 млн лет, для звезды массой 10 M ☉ примерно в 1000 раз меньше, а для звезды массой 0,1 M в тысячи раз больше.

    Стадия главной последовательности

    На стадии главной последовательности звезда светит за счёт выделения энергии в ядерных реакциях превращения водорода в гелий. Запас водорода обеспечивает светимость звезды массой 1M ☉ примерно в течение 10 10 лет. Звезды большей массы расходуют водород быстрее: так, звезда массой в 10 M израсходует водород менее, чем за 10 7 лет (светимость пропорциональна четвертой степени массы).

    Звёзды малой массы

    По мере выгорания водорода центральные области звезды сильно сжимаются.

    Звёзды большой массы

    После выхода на главную последовательность эволюция звезды большой массы (>1,5 M ☉ ) определяется условиями горения ядерного горючего в недрах звезды. На стадии главной последовательности это - горение водорода, но в отличие от звёзд малой массы в ядре доминируют реакции углеродно-азотного цикла. В этом цикле атомы C и N играют роль катализаторов. Скорость выделения энергии в реакциях такого цикла пропорциональна T 17 . Поэтому в ядре образуется конвективное ядро, окружённое зоной, в которой перенос энергии осуществляется излучением.

    Светимость звёзд большой массы намного превышает светимость Солнца, и водород расходуется значительно быстрее. Связано это и с тем, что температура в центре таких звёзд тоже намного выше.

    По мере уменьшения доли водорода в веществе конвективного ядра темп выделения энергии уменьшается. Но поскольку темп выделения определяется светимостью, ядро начинает сжиматься, и темп выделения энергии остаётся постоянным. Звезда же при этом расширяется и переходит в область красных гигантов.

    Стадия зрелости звёзд

    Звёзды малой массы

    К моменту полного выгорания водорода в центре звезды малой масс образуется небольшое гелиевое ядро. В ядре плотность вещества и температура достигают значений 10 9 кг/м 3 и 10 8 K соответственно. Горение водорода происходит на поверхности ядра. Поскольку температура в ядре повышается, темп выгорания водорода увеличивается, увеличивается светимость. Лучистая зона постепенно исчезает. А из-за увеличения скорости конвективных потоков внешние слои звезды раздуваются. Размеры и светимость её возрастают - звезда превращается в красный гигант.

    Звёзды большой массы

    Когда водород у звезды большой массы полностью исчерпывается, в ядре начинает идти тройная гелиевая реакция и одновременно реакция образования кислорода (3He=>C и C+He=>О). В то же время на поверхности гелиевого ядра начинает гореть водород. Появляется первый слоевой источник.

    Запас гелия исчерпывается очень быстро, так как в описанных реакциях в каждом элементарном акте выделяется сравнительно немного энергии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.

    Эволюционный трек при этом оказывается очень сложным. На диаграмме Герцшпрунга-Расселла звезда перемещается вдоль последовательности гигантов или (при очень большой массе в области сверхгигантов) периодически становится цефеидой.


    Конечные стадии эволюции звёзд

    Старые звёзды малой массы

    У звезды малой массы, в конце концов, скорость конвективного потока на каком-то уровне достигает второй космической скорости, оболочка отрывается, и звезда превращается в белый карлик, окружённый планетарной туманностью.

    Гибель звёзд большой массы

    В конце эволюции звезда большой массы имеет очень сложное строение. В каждом слое свой химический состав, в нескольких слоевых источниках протекают ядерные реакции, а в центре образуется железное ядро.

    Ядерные реакции с железом не протекают, так как они требуют затраты (а не выделения) энергии. Поэтому железное ядро быстро сжимается, температура и плотность в нем увеличиваются, достигая фантастических величин - температуры 10 9 K и плотности 10 9 кг/м3.

    В этот момент начинаются два важнейших процесса, идущие в ядре одновременно и очень быстро (по-видимому, за минуты). Первый заключается в том, что при столкновениях ядер атомы железа распадаются на 14 атомов гелия, второй - в том, что электроны «вдавливаются» в протоны, образуя нейтроны. Оба процесса связаны с поглощением энергии, и температура в ядре (также и давление) мгновенно падает. Внешние слои звезды начинают падение к центру.

    Падение внешних слоёв приводит к резкому повышению температуры в них. Начинают гореть водород, гелий, углерод. Это сопровождается мощным потоком нейтронов, который идёт из центрального ядра. В результате происходит мощнейший ядерный взрыв, сбрасывающий внешние слои звезды, уже содержащие все тяжёлые элементы, вплоть до калифорния. По современным воззрениям все атомы тяжёлых химических элементов (т.е. более тяжёлых, чем гелий) образовались во Вселенной именно во вспышках сверхновых. На месте взорвавшейся сверхновой остаётся в зависимости от массы взорвавшейся звезды либо нейтронная звезда, либо чёрная дыра.

    Термоядерный синтез в недрах звёзд

    В это время для звёзд массой больше, чем 0.8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остается конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчетах.

    По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает ее понижать. И для звёзд меньше 0.08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики , и их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем - постепенное остывание с остановкой всех ядерных реакций.

    Молодые звёзды промежуточной массы

    Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

    Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

    Молодые звёзды с массой больше 8 солнечных масс

    На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтоб они компенсировали потери на излучение. У данных звёзд истечения массы и светимость настолько велика, что не просто останавливает коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100-200 массы Солнца.

    Середина жизненного цикла звезды

    Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,08 до более чем 200 солнечных масс. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все, новые звезды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

    То, что происходит в дальнейшем, вновь зависит от массы звезды.

    Поздние годы и гибель звёзд

    Старые звёзды с малой массой

    На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

    Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные солнечные ветры . В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик .

    Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии синтезировать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

    Звёзды среднего размера

    При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта , её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия . Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

    Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных солнечных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа , OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров .

    Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии , чтобы быть выброшенными и превратиться в планетарную туманность . В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли .

    Белые карлики

    Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

    У звезд более массивных, чем Солнце , давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны , упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

    Сверхмассивные звёзды

    После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант , ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

    В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы , из кремния синтезируется железо -56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа -56 обладает максимальным дефектом массы и образование более тяжёлых ядер невыгодно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

    То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

    Сопутствующий этому всплеск нейтрино провоцирует ударную волну . Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

    Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

    Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также стоит под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

    Нейтронные звёзды

    Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами , образуют нейтроны . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

    Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звезды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

    Чёрные дыры

    Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского . После этого звезда становится чёрной дырой.

    Существование чёрных дыр было предсказано общей теорией относительности . Согласно ОТО материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика делает возможным исключения из этого правила.

    Остаётся ряд открытых вопросов. Главный среди них: «А есть ли черные дыры вообще?» Ведь чтобы сказать точно, что данный объект это черная дыра необходимо наблюдать его горизонт событий. Все попытки это сделать оканчивались провалом. Но надежда пока есть, так как некоторые объекты нельзя объяснить без привлечения аккреции , причем аккреции на объект без твердой поверхности, но само существование черных дыр это не доказывает.

    Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

    Астрофизика уже достаточно продвинулась в изучении эволюции звезд. Теоретические модели подкреплены надежными наблюдениями, и несмотря на наличие некоторых пробелов, общая картина жизненного цикла звезды давно известна.

    Рождение

    Все начинается с молекулярного облака. Это огромные области межзвездного газа, достаточно плотные для того, чтобы в них сформировались молекулы водорода.

    Затем происходит событие. Возможно, оно будет вызвано ударной волной от взорвавшейся рядом сверхновой, а может и естественной динамикой внутри молекулярного облака. Однако исход один – гравитационная неустойчивость приводит к формированию центра тяжести где-то внутри облака.

    Поддаваясь соблазну гравитации, окружающее вещество начинает вращаться вокруг этого центра и наслаивается на его поверхность. Постепенно образуется уравновешенное сферическое ядро с растущей температурой и светимостью – протозвезда.

    Газопылевой диск вокруг протозвезды вращается все быстрее, из-за ее растущей плотности и массы все больше частиц сталкиваются в ее недрах, температура продолжает расти.

    Как только она достигает миллионов градусов, в центре протозвезды происходит первая термоядерная реакция. Два ядра водорода преодолевают кулоновский барьер и соединяются, образуя ядро гелия. Затем – другие два ядра, потом – другие… пока цепная реакция не охватит всю область, в которой температура позволяет водороду синтезировать гелий.

    Энергия термоядерных реакций затем стремительно достигает поверхности светила, резко увеличивая его яркость. Так протозвезда, если обладает достаточной массой, превращается в полноценную молодую звезду.

    Область активного звездообразования N44 / ©ESO, NASA

    Ни детства, ни отрочества, ни юности

    Все протозвезды, которые разогреваются достаточно для запуска термоядерной реакции в своих недрах, затем вступают в самый продолжительный и стабильный период, занимающий 90% всего времени их существования.

    Все, что с ними происходит на данном этапе, это постепенное выгорание водорода в зоне термоядерных реакций. Буквальное «прожигание жизни». Звезда очень медленно – в течение миллиардов лет – будет становиться горячее, станет расти интенсивность термоядерных реакций, как и светимость, но не более того.

    Конечно, возможны события, которые ускоряют звездную эволюцию – например, близкое соседство или даже столкновение с другой звездой, однако от жизненного цикла отдельного светила это никак не зависит.

    Есть и своеобразные «мертворожденные» звезды, которые не могут выйти на главную последовательность – то есть не способны справляться с внутренним давлением термоядерных реакций.

    Это маломассивные (менее 0,0767 от массы Солнца) протозвезды – те самые, которые называют коричневыми карликами. Из-за недостаточного гравитационного сжатия они теряют энергии больше, чем образуется в результате синтеза водорода. Со временем термоядерные реакции в недрах этих звезд прекращаются, и все, что им остается, это продолжительное, но неизбежное остывание.

    Коричневый карлик в представлении художника / ©ESO/I. Crossfield/N. Risinger

    Неспокойная старость

    В отличие от людей, самая активная и интересная фаза в «жизни» массивных звезд начинается к концу их существования.

    Дальнейшая эволюция каждого отдельного светила, достигшего конца главной последовательности – то есть точки, когда водорода для термоядерного синтеза в центре звезды уже не осталось – напрямую зависит от массы светила и его химического состава.

    Чем меньшей массой обладает звезда на главной последовательности, тем более продолжительной будет ее «жизнь», и менее грандиозным будет ее финал. Например, звезды с массой менее половины от массы Солнца – такие, которые называются красными карликами – вообще еще ни разу не «умирали» с момента Большого взрыва. Согласно вычислениям и компьютерному моделированию, такие звезды из-за слабой интенсивности термоядерных реакций могут спокойно сжигать водород от десятков миллиардов до десятков триллионов лет, а в конце своего пути, вероятно, потухнут так же, как коричневые карлики.

    Звезды со средней массой от половины до десяти масс Солнца после выгорания водорода в центре оказываются способны сжигать более тяжелые химические элементы в своем составе – сначала гелий, затем углерод, кислород и далее, насколько повезло с массой, вплоть до железа-56 (изотоп железа, который иногда называют «пеплом термоядерного горения»).

    Для таких звезд фаза, следующая за главной последовательностью, называется стадией красного гиганта. Запуск гелиевых термоядерных реакций, затем углеродных и т.д. каждый раз приводит к значительным трансформациям звезды.

    В каком-то смысле это предсмертная агония. Звезда то расширяется в сотни раз и краснеет, то снова сжимается. Светимость тоже меняется – то в тысячи раз увеличивается, то снова уменьшается.

    В конце этого процесса внешняя оболочка красного гиганта сбрасывается, образуя зрелищную планетарную туманность. В центре остается обнаженное ядро - белый гелиевый карлик с массой приблизительно в половину солнечной и радиусом, примерно равным радиусу Земли.

    Белые карлики обладают судьбой, схожей с красными карликами – спокойное выгорание в течение миллиардов-триллионов лет, если, конечно, рядом нет звезды-компаньона, за счет которой белый карлик может увеличить свою массу.

    Система KOI-256, состоящая из красного и белого карликов / ©NASA/JPL-Caltech

    Экстремальная старость

    Если звезде особенно повезло с массой, и она равна примерно 12 солнечным и более, то финальные стадии ее эволюции характеризуются значительно более экстремальными событиями.

    Если масса ядра красного гиганта превышает предел Чандрасекара, равный 1,44 солнечной массы, то звезда не просто сбрасывают свою оболочку в финале, но высвобождает скопившуюся энергию в мощнейшем термоядерном взрыве – сверхновой.

    В сердце остатков сверхновой, разбрасывающей звездное вещество с огромной силой на многие световые годы вокруг, остается в этом случае уже не белый карлик, а сверхплотная нейтронная звезда, радиусом всего в 10-20 километров.

    Однако если масса красного гиганта больше 30 солнечных масс (вернее, уже сверхгиганта), а масса его ядра превышает предел Оппенгеймера-Волкова, равный примерно 2,5-3 массам Солнца, то не образуется уже ни белый карлик, ни нейтронная звезда.

    В центре останков сверхновой появляется нечто куда более впечатляющее – черная дыра, так как ядро взорвавшейся звезды сжимается настолько сильно, что коллапсировать начинают даже нейтроны, и больше уже ничто, включая свет, не может покинуть пределов новорожденной черной дыры – вернее, ее горизонта событий.

    Особо массивные звезды – голубые сверхгиганты – могут миновать стадию красного сверхгиганта и также взорваться в сверхновой.

    Сверхновая SN 1994D в галактике NGC 4526 (яркая точка в нижнем левом углу) / ©NASA

    А что ждет наше Солнце?

    Солнце относится к звездам средней массы, так что если вы внимательно читали предыдущую часть статьи, то уже сами можете предсказать, на каком именно пути находится наша звезда.

    Однако человечество еще до превращения Солнца в красного гиганта ждет ряд астрономических потрясений. Жизнь на Земле станет невозможна уже через миллиард лет, когда интенсивность термоядерных реакций в центре Солнца станет достаточной, чтобы испарить земные океаны. Параллельно с этим условия для жизни на Марсе будут улучшаться, что в определенный момент может сделать его пригодным для обитания.

    Примерно через 7 миллиардов лет Солнце разогреется достаточно, чтобы термоядерная реакция была запущена в его внешних областях. Радиус Солнца увеличится примерно в 250 раз, а светимость в 2700 раз – произойдет превращение в красного гиганта.

    Из-за усилившегося солнечного ветра звезда на этом этапе потеряет до трети своей массы, однако успеет поглотить Меркурий.

    Масса солнечного ядра за счет выгорания водорода вокруг него увеличится затем настолько, что произойдет так называемая гелиевая вспышка, и начнется термоядерный синтез ядер гелия в углерод и кислород. Радиус звезды значительно уменьшится, до 11 стандартных солнечных.

    Солнечная активность / ©NASA/Goddard/SDO

    Однако уже 100 миллионов лет спустя реакция с гелием перейдет на внешние области звезды, и та снова увеличится до размеров, светимости и радиуса красного гиганта.

    Солнечный ветер на этой стадии станет настолько сильным, что унесет внешние области звезды в космическое пространство, и они образуют обширную планетарную туманность.

    А там, где было Солнце, останется белый карлик размером с Землю. Сначала крайне яркий, но с течением времени все более и более тусклый.