Семья и Дети

Основные положения хромосомной теории наследственности. Закон Моргана

На рубеже XIX и XX веков были изучены основные этапы деления клетки. Время жизни клетки с момента ее образования до деления составляет клеточный цикл . Клеточный цикл делится на стадии, ярчайшей из которых в морфологическом отношении является митоз или собственно деление клетки. Период между митозами называется интерфазой . Ключевая роль в митозе принадлежит хромосомам – таким структурам в ядрах клеток, которые в период деления отчетливо видны при световой микроскопии и использовании специфических методов окрашивания. Окрашивающееся вещество хромосом называется хроматином . Впервые существование хромосом было показано Флемингом в 1882 году. Термин хромосома впервые введен Валдеером в 1888 году (греч.: chroma — окраска; soma — тело).

Набор хромосом одной клетки называется кариотипом . Число и морфология хромосом относятся к видовым признакам. Различные виды организмов различаются по кариотипу, в то время как в пределах одного вида таких различий не наблюдается, и аномалии кариотипа чаще всего ассоциированы с тяжелыми патологическими состояниями. В каждой хромосоме есть важный функциональный участок, который называется центромерой . Центромера разделяет хромосому на два плеча: короткое (p ) и длинное (q ) . Хромосомы делят на группы в зависимости от их длины и локализации центромеры. В соматических клетках высших каждая хромосома представлена двумя копиями, то есть диплоидным набором . И только в половых клетках наблюдается одинарный или гаплоидный набор хромосом. Это обеспечивается за счет особой формы деления половых клеток – мейоза .

Первые обширные исследования, касающиеся структуры и морфологии хромосом, в нашей стране были проведены на растительных объектах в 20-е годы прошлого века выдающимся цитологом и эмбриологом С. Г. Навашиным и его талантливыми учениками – М. С. Навашиным, Г. А. Левитским, Л. Н. Делоне. В 1924 году Г. А. Левитский опубликовал первое в мире руководство по цитогенетике: «Материальные основы наследственности», в котором, в частности, он ввел понятие кариотипа в том значении, в котором этот термин употребляется и в настоящее время.

Рассмотрим более подробно основные стадии клеточного цикла – рис. 5, этапы митоза – рис. 6 и мейоза – рис. 7.

Рисунок 5. Клеточный цикл

Клетка, закончившая деление находится в стадии G 0 . Самой длительной стадией интерфазы является период относительного покоя клетки – G 1 , ее продолжительность может значительно варьировать. Примерно в середине стадии G 1 имеется контрольная точка, при достижении которой клетка неизбежно вступает в деление. После G 1 начинается очень важная синтетическая стадия S, в процессе которой происходит удвоение каждой хромосомы с образованием двух хроматид , соединенных между собой одной центромерой. Далее следует подготовка к митозу – стадия G 2 и сам митоз – стадия М.

Рисунок 6. Митоз

Митоз, в свою очередь, также делится на стадии. На стадии профазы происходит исчезновение ядерной мембраны, конденсация или уплотнение хромосом за счет их спирализации, миграция центриолей к противоположным полюсам, приводящая к поляризации клетки, и формирование веретена деления , состоящего из микротрубочек. Нити микротрубочек тянутся от одного полюса до другого и к ним прикрепляются центромеры хромосом. В период метафазы центромеры располагаются по экватору клетки перпендикулярно оси веретена деления. Именно в этот период хромосомы особенно отчетливо видны, так как они находятся в наиболее компактном состоянии. На стадии анафазы происходит разделение центромер, хроматиды превращаются в самостоятельные хромосомы и, увлекаемые центромерами, начинают двигаться к противоположным полюсам клетки по нитям веретена деления. На заключительной стадии – телофазе – происходит деспирализация хромосом, исчезает веретено деления, формируется ядерная мембрана и происходит разделение цитоплазмы. На стадии интерфазы при обычной световой микроскопии хромосомы как отдельные структуры не видны, окрашены только зерна хроматина, случайным образом распределенные по ядру.

Рисунок 7. Мейоз

Мейоз происходит только при образовании половых клеток, и он включает два клеточных деления: мейоз I или редукционное деление и мейоз II. Во время профазы мейоза I гомологичные хромосомы коньгируют (сливаются) друг с другом по всей длине, образуя бивалент . В это время может происходить обмен участками между несестринскими хроматидами – кроссинговер или гомологичная рекомбинация (рис. 8.)

Рисунок 8. Кроссинговер

В точке рекомбинации образуется видимая в световой микроскоп крестообразная структура – хиазма . Обмен происходит только между двумя из четырех хроматид. Хиазмы формируются случайно, и их число, в среднем, зависит от длины хромосомы: чем длиннее хромосома, тем больше хиазм. На стадии метафазы биваленты выстраиваются в экваториальной плоскости, при этом ценромеры случайно ориентируются относительно полюсов клетки. На стадии анафазы гомологичные хромосомы отделяются друг от друга и начинают двигаться к противоположным полюсам. При этом расщепления центромеры не происходит, и сестринские хроматиды оказываются связанными. Однако они могут быть уже не идентичны друг другу из-за произошедшего кроссинговера. Таким образом, в процессе мейоза I из одной диплоидной клетки образуются две гаплоидные. Промежуток между первым и вторым делениями мейоза называется интеркинезом . Он может быть достаточно продолжительным, при этом хромосомы декомпактизируются и выглядят также как в интерфазе. Важно подчеркнуть, что на этой стадии не происходит удвоения хроматид.

В профазе мейоза II восстанавливается веретено деления, хромосомы располагаются в экваториальной плоскости. В анафазе II происходит расщепление центромер, и хромосомы двигаются к противоположным полюсам. Таким образом, на один акт удвоения хромосом приходятся два последовательных цикла деления клетки. После завершения телофазы II диплоидная родительская клетка делится на четыре гаплоидные половые клетки, причем образовавшиеся гаметы не идентичны друг другу – фрагменты материнских и отцовских хромосом находятся в них в различных комбинациях.

Исследуя процессы митоза и мейоза У. Сэттон и Е. Бовери в 1902 г. пришли к заключению, что постулированные Менделем наследственные факторы или гены находятся в хромосомах, так как поведение хромосом соответствует поведению этих наследственных факторов. Действительно, Мендель предположил, что в соматических клетках содержатся две копии наследственного фактора, отвечающего за один и тот же признак или, как мы уже определили, два аллеля одного гена. Эти аллели могут быть идентичными – АА или аа , либо разными – Аа . Но в половые клетки попадает только один из аллелей – А или а. Вспомним, что гомологичные хромосомы в соматических клетках также содержатся в двух копиях, и только одна из них попадает в гаметы. При оплодотворении двойной набор хромосом и аллелей гена восстанавливается.

Прямые доказательства локализации генов в хромосомах были получены позднее Т. Морганом (1910) и К. Бриджесом (1916) в опытах на дрозофиле. Возвращаясь к законам Менделя, заметим, что независимое комбинирование справедливо только для тех признаков, гены которых находятся в разных хромосомах. Родительские аллели генов, локализованных в одной хромосоме, имеют большую вероятность совместного попадания в одну и ту же половую клетку. Таким образом, появилось представление о гене, как об участке хромосомы или хромосомном локусе , который отвечает за один признак и одновременно является единицей рекомбинации и мутации, ведущей к изменению фенотипа.

Хромосомы высших организмов состоят из эухроматина и гетерохроматина , сохраняющего свое компактное положение на протяжении всего клеточного цикла. Именно гетерохроматин виден в интерфазных ядрах в виде окрашенных гранул. Большое количество гетерохроматина локализовано в области центромеры и на концах хромосом, которые называются теломерами . Хотя функции гетерохроматина до конца не ясны, предполагается, что он играет важную роль в поддержании структурной целостности хромосом, в их правильном расхождении в процессе деления клетки, а также в регуляции работы генов. Эухроматин на препаратах имеет более светлую окраску, и, по-видимому, в этих районах локализована большая часть генов. Хромосомные перестройки чаще возникают в области гетерохроматина. Большая роль в изучении структуры и функций гетерохроматиновых и эухроматиновых районов хромосом принадлежит нашей выдающейся соотечественнице Александре Алексеевне Прокофьевой-Бельговской. Впервые детальное морфологическое описание десяти наиболее крупных хромосом человека и различных групп более мелких хромосом представлено в работах ведущих отечественных цитологов М. С. Навашина и А. Г. Андреса в середине 30-х годов прошлого века.

В 1956 году Тио и Леви, используя обработку гистологических препаратов колхицином, определили, что у человека 46 хромосом, состоящих из 23 различных пар. Колхицин задерживает деление клеток на стадии метафазы, когда хромосомы в наибольшей степени конденсированы и потому удобны для распознавания. На рис. 9 представлена схема дифференциального окрашивания хромосом человека.

Рисунок 9. Схема дифференциального окрашивания хромосом человека

У женщин обе хромосомы каждой пары полностью гомологичны друг другу по форме и рисунку окрашивания. У мужчин такая гомология сохраняется только для 22 пар хромосом, которые называются аутосомами . Оставшаяся пара у мужчин состоит из двух различных половых хромосом — X и Y . У женщин половые хромосомы представлены двумя гомологичными X-хромосомами. Таким образом, нормальный кариотип женщины записывается как (46, XX), а мужчины — (46, XY). В половые клетки, как мужчин, так и женщин попадает только один набор хромосом. Все яйцеклетки несут 22 аутосомы и X-хромосому, а вот сперматозоиды различаются – половина из них имеет такой же набор хромосом, как и яйцеклетки, а в другой половине вместо Х-хромосомы присутствует Y-хромосома. При оплодотворении двойной набор хромосом восстанавливается. При этом, кто родится – девочка или мальчик – зависит от того, какой сперматозоид принял участие в оплодотворении, тот, который несет Х- хромосому или тот, который несет Y-хромосому. Как правило, это случайный процесс, поэтому девочки и мальчики рождаются примерно с равной вероятностью.

На начальных этапах анализа кариотипа человека индивидуальная идентификация могла быть осуществлена только в отношении трех первых наиболее крупных хромосом. Остальные хромосомы делили на группы в зависимости от их размера, расположения центромеры и наличия спутников или сателлитов – небольших компактных фрагментов, отделенных от хромосомы тонкими перетяжками. На рис. 10 изображены типы хромосом: акроцентрики, метацентрики и субметацентрики при локализации центромеры соответственно на конце хромосомы, посредине и в промежуточном положении.

Рисунок 10. Типы хромосом

В соответствии с принятой классификацией у человека выделяют 7 групп хромосом: A, B, C, D, E, F и G или 1, 2, 3, 4, 5, 6 и 7. Для лучшей идентификации хромосом делают их раскладку по группам или кариограмму . На рис. 11 изображен женский кариотип и его кариограмма.

Рисунок 11. Женский кариотип и его кариограмма

В начале 70-х годов XX века были разработаны методы дифференциального окрашивания хромосом с использованием красителя Гимза (G-, R-, C-, Q-методы). При этом на хромосомах выявляется характерная поперечная исчерченность, так называемые диски или бэнды , расположение которых специфично для каждой пары хромосом. Методы дифференциального окрашивания хромосом позволяют идентифицировать не только каждую хромосому, но и отдельные районы хромосом, последовательно пронумерованные от центромеры к теломере, а также сегменты внутри районов. Например, запись Xp21.2 означает короткое плечо X-хромосомы, район 21, сегмент 2. Эта запись очень удобна для определения принадлежности генов или других элементов генома к определенным хромосомным локусам. В частности, в области Xp21.2 локализован ген миодистрофии Дюшенна – DMD . Таким образом, были созданы методические основы для изучения особенностей кариотипа у разных видов организмов, определения его индивидуальной изменчивости и аномалий при определенных патологических состояниях. Тот раздел генетики, который занимается изучением хромосом и их аномалий, называется цитогенетикой . Первые цитогенетические карты хромосом человека составлены К. Б. Бриджесом и Стертевантом.

В первой половине XX века хромосомная теория наследственности получила значительное развитие. Было показано, что гены расположены в хромосомах линейно. Гены одной хромосомы образуют группу сцепления и наследуются вместе. Новые сочетания аллелей генов одной хромосомы могут образовываться за счет кроссинговера, причем вероятность этого события возрастает с увеличением расстояния между генами. Были введены единицы измерения генетического расстояния – сантиморганы или морганиды , названные так в честь основоположника хромосомной теории наследственности – Томаса Моргана. Считается, что два гена одной хромосомы находятся на расстоянии 1сантиморган (сМ), если вероятность кроссинговера между ними в процессе мейоза составляет 1%. Конечно, сантиморганы не являются абсолютными единицами измерения расстояния в хромосомах. Они непосредственно зависят от кроссинговера, который с разной частотой может происходить в разных участках хромосом. В частности, в области гетерохроматина кроссинговер проходит менее интенсивно.

Заметим, что описанный выше характер деления соматических и половых клеток – митоз и мейоз, справедлив для эукариот , то есть таких организмов, в клетках которых имеются ядра. У бактерий, которые относятся к классу прокариот , ядер нет, но одна хромосома в клетке присутствует и, как правило, она имеет кольцевую форму. Наряду с хромосомой, в клетках прокариот в большом количестве копий могут содержаться гораздо более мелкие кольцевые структуры, которые называются плазмидами .

В 1961 году М. Лайон выдвинул гипотезу о том, что у особей женского пола одна из Х-хромосом инактивируется. Причем в разных клетках инактивации могут подвергаться Х-хромосомы как отцовского, так и материнского происхождения. При анализе женского кариотипа инактивированная Х-хромосома выглядит в виде компактной хорошо окрашенной структуры хроматина округлой формы, расположенной вблизи от ядерной мембраны. Это тельце Барра или половой гетерохроматин . Его идентификация является самым простым способом цитогенетической диагностики пола. Напомним, что в У-хромосоме практически нет гомологов генов Х-хромосомы, однако инактивация одной из Х-хромосом приводит к тому, что доза большинства генов, локализованных в половых хромосомах, у мужчин и женщин оказывается одинаковой, то есть инактивация Х-хромосомы у женщин является одним из механизмов компенсации дозы генов. Процесс инактивации Х-хромосомы называется лайонизацией , и он носит случайный характер. Поэтому в организме женщин соотношение клеток с инактивированной Х-хромосомой отцовского, либо материнского происхождения будет примерно одинаковым. Таким образом, женщины, гетерозиготные по мутации в гене, локализованном в Х-хромосоме, имеют мозаичный фенотип – одна часть клеток содержит нормальный аллель, а другая – мутантный.

Лекц и я № 3

Хромосомная теория наследственности.

Основные положення хромосомной теории наследственности. Хромосомный анализ.

Формирование хромосомной теории. В 1902-1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911-1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Основные положения хромосомной теории наследственности.

1. Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

2. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

3. Гены расположены в хромосоме в линейной последовательности.

4. Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

5. Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

6. Каждый биологический вид характеризуется определенным набором хромосом - кариотипом .

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием . Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов- Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер .

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость , которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе .

Сцепление и кроссинговер. Из принципов генетического анализа, изложенных в преды­дущих главах, с очевидностью вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в негомологичных хромосомах. Следовательно, у каждого организма число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, оче­видно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно.

Остается предположить, что в каждой хромосоме находится не один ген, а много. Если это так, то третий закон Менделя касается распределения хромосом, а не генов, т. е. его действие ограничено.

Явление сцепленного наследования . Из третьего закона Менделя следует, что при скрещивании форм, различающихся двумя парами генов (АВ и а b ), получается гибрид А a В b , образующий четыре сорта гамет АВ, А b , аВ и а b в равных количествах.

В соответствии с этим в анализирующем скрещивании осуществляется расщепление 1: 1: 1: 1, т.е. сочетания признаков, свойственные родительским формам (АВ и а b ), встречаются с такой же частотой, как и новые комбинации b и аВ),- по 25%. Однако по мере накопления фактов генетики все чаще стали сталкиваться с отклонениями от независимого наследования. В отдельных случаях новые комбинации признаков b и аВ) в F b совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм. Но чаще в потомстве в той или иной степени преобладали родительские сочетания признаков, а новые комбинации встречались с меньшей частотой, чем ожидается при независимом наследовании, т.е. меньше 50%. Таким образом, в данном случае гены чаще наследовались в исходном сочетании (были сцеплены), но иногда это сцепление нарушалось, давая новые комбинации.

Совместное наследование генов, ограничивающее их свобод­ное комбинирование, Морган предложил называть сцеплением генов или сцепленным наследованием.

Кроссинговер и его генетическое доказательство. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцепленно - группой.

Исследования Т.Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами.

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными, а с непретерпевшими - некроссоверными. Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверами или рекомбинантами, а возникшие за счет некроссоворных гамет гибрида - некроссоверными или нерекомбинантными.

Закон сцепления Моргана. При анализе расщепления в случае кроссинговера обращает на себя внимание определенное коли­чественное отношение кроссоверных и некроссоверных классов. Обе исходные родительские комбинации признаков, образовавшиеся из некроссоверных гамет, оказываются в потомстве анали­зирующего скрещивания в равном количественном отношении. В указанном опыте с дрозофилой тех и других особей было примерно по 41,5%. В сумме некроссоверные мухи составили 83% от общего числа потомков. Два кроссоверных класса по числу особей также одинаковы, и сумма их равна 17%.

Частота кроссинговера не зависит от аллельного состояния генов, участвующих в скрещивании. Если в качестве родителя использовать мух и , то в анализирующем скрещивании кроссоверные (b + vg и bvg + ) и некроссоверные (bvg и b + vg + ) особи появятся с той же частотой (соответственно 17 и 83%), что и в первом случае.

Результаты этих опытов показывают, что сцепление генов реально существует, и лишь в известном проценте случаев оно нарушается вследствие кроссинговера. Отсюда и был сделан вывод, что между гомологичными хромосомами может осуществляться взаимный обмен идентичными участками, в результате чего гены, находящиеся в этих участках парных хромосом, перемещаются из одной гомологичной хромосомы в другую. Отсутствие перекреста (полное сцепление) между генами представляет исключение и известно лишь у гетерогаметного пола немногих видов, например у дрозофилы и шелкопряда.

Изученное Морганом сцепленное наследование признаков получило название закона сцепления Моргана. Поскольку рекомбинация осуществляется между генами, а сам ген кроссинговером не разделяется, его стали считать единицей кроссинговера.

Величина кроссинговера . Величина кроссинговера измеряется отношением числа кроссоверных особей к общему числу особей в потомстве от анализирующего скрещивания. Рекомбинация происходит реципрокно, т.е. между родительскими хромосомами осуществляется взаимный обмен; это обязывает подсчитывать кроссоверные классы вместе как результат одного события. Величина кроссинговера выражается в процентах. Один процент кроссинговера составляет единицу расстояния между генами.

Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y , белый цвет глаз w и вильчатые крылья bi , были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w ; 3,5% − от кроссинговера между генами w и bi и 4,7% - между у и bi .

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w , w и bi , следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.

Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое опрделенное место - локус.

Основным положениям хромосомной теории наследственности - парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме - соответствует однонитчатая модель хромосомы.

Одинарный и множественный перекресты. Приняв положения, что генов в хромосоме может быть много и расположены они в хромосоме в линейном порядке, а каждый ген занимает определённый локус в хромосоме, Морган допустил, что перекрест между гомологичными хромосомами может происходить одновременно в нескольких точках. Это предположение было им доказано тоже на дрозофиле, а затем полностью подтвердилось на ряде других животных, а также на растениях и микроорганизмах.

Кроссинговер, происходящий лишь в одном месте, называют одинарным, в двух точках одновременно – двойным, в трёх – тройным и т.д., т.е. он может быть множественным.

Чем дальше отстоят друг от друга в хромосоме гены, тем больше вероятность двойных перекрестов между ними. Процент рекомбинаций между двумя генами тем точнее отражает расстояние между ними, чем оно меньше, так как в случае малого расстояния уменьшается возможность двойных обменов.

Для учета двойного кроссинговера необходимо иметь дополнительный маркер, находящийся между двумя изучаемыми генами. Определение расстояния между генами осуществляют следующим образом: к сумме процентов одинарных кроссоверных классов прибавляют удвоенный процент двойных кроссинговеров. Удвоение процента двойных кроссинговеров необходимо в связи с тем, что каждый двойной кроссинговер возни­кает благодаря двум независимым одинарным разрывам в двух точках.

Интерференция. Установлено, что кроссинговер, происшедший в одном месте хромосомы, подавляет кроссинговер в близлежащих районах. Это явление носит название интерференции. При двойном перекресте интерференция проявляется особенно сильно в случае малых расстояний между генами. Разрывы хромосом оказываются зависимыми друг от друга. Степень этой зависимо­сти определяется расстоянием между происходящими разрывами: по мере удаления от места разрыва возможность другого разрыва увеличивается.

Эффект интерференции измеряется отношением числа наблюдаемых двойных разрывов к числу возможных при допущении полной независимости каждого из разрывов.

Локализация гена. Если гены расположены в хромосоме линейно, а частота кроссинговера отражает расстояние между ними, то можно определить местоположение гена в хромосоме.

Прежде чем определить, положение гена, т. е. его локализацию, необходимо определить, в какой хромосоме находится данный ген. Гены, находящиеся в одной хромосоме и наследующиеся сцепленно, составляют группу сцепления. Очевидно, что количество групп сцепления у каждого вида должно соответствовать гаплоидному набору хромосом.

К настоящему времени группы сцепления определены у наиболее изученных в генетическом отношении объектов, причем во всех этих случаях обнаружено полное соответствие числа групп сцепления гаплоидному числу хромосом. Так, у кукурузы (Zea mays ) гаплоидный набор хромосом и число групп сцепления со­ставляют 10, у гороха (Pisum sativum ) – 7, дрозофилы (Drosophila melanogaster) – 4, домовой мыши (Mus musculus ) – 20 и т. п.

Поскольку ген занимает определенное место в группе сцепления, это позволяет устанавливать порядок расположения генов в каждой хромосоме и строить генетические карты хромосом.

Генетические карты. Генетической картой хромосом называют схему относительного расположения генов, находящихся в данной группе сцепления. Они составлены пока лишь для некоторых наиболее изученных с генетической точки зрения объектов: дрозофилы, кукурузы, томатов, мыши, нейроспоры, кишечной палочки и др.

Генетические карты составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют.

Для того, чтобы составить карты, необходимо изучить закономерности наследования большого числа генов. У дрозофилы, например, изучено более 500 генов, локализованных в четырех группах сцепления, у кукурузы - более 400 генов, локализованных в десяти группах сцепления и т.д. При составлении генетических карт указывается группа сцепления, полное или сокращенное название генов, расстояние в процентах от одного из концов хромосомы, принятого за нулевую точку; иногда обозначается место центромеры.

У многоклеточных организмов рекомбинация генов бывает реципрокной. У микроорганизмов она может быть односторонней. Так, у ряда бактерий, например у кишечной палочки (Escherichia coli ), перенос генетической информации происходит во время конъюгации клеток. Единственная хромосома бактерии, имеющая форму замкнутого кольца, рвется во время конъюгации всегда в определенной точке и переходит из одной клетки в другую.

Длина переданного участка хромосомы зависит от длительности конъюгации. Последовательность генов в хромосоме оказывается постоянной. В силу этого расстояние между генами на такой кольцевой карте измеряется не в процентах кроссинговера, а в минутах, что отражает продолжительность конъюгации.

Цитологическое доказательство кроссинговера. После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов. Наблюдаемые в профазе мейоза картины хиазм могут служить лишь косвенным доказательством этого явления, констатация происшедшего обмена прямым наблюдением невозможна, так как обменивающиеся участками гомологичные хромосомы обычно абсолютна одинаковы но величине и форме.

Чтобы сопоставить цитологические карты гигантских хромо­сом с генетическими, Бриджес предложил воспользоваться коэффициентом кроссинговера. Для этого он разделил общую длину всех хромосом слюнных желез (1180 мкм) на общую длину генетических карт (279 единиц). В среднем это отношение оказалось равным 4,2. Следовательно, каждой единице перекреста на генетической карте соответствует 4,2 мкм на цитологической карте (для хромосом слюнных желез). Зная расстояние между генами на генетической карте какой-либо хромосомы, можно сравнить относительную частоту перекреста в разных ее районах. Например, в Х- хромосоме дрозофилы гены у и ec находятся на расстоянии 5,5%, следовательно, расстояние между ними в гигантской хромосоме должно быть 4,2 мкм Х 5,5 = 23 мкм, но непосредственное измерение дает 30 мкм. Значит, в этом рай­оне Х -хромосомы кроссинговер идет реже средней нормы.

В силу неравномерного осуществления обменов по длине хромосом гены при нанесении их на карту распределяются на ней с разной плотностью. Следовательно, распределение генов на генетических картах можно рассматривать как показатель возможности осуществления перекреста по длине хромосомы.

Механизм кроссинговера. Еще до открытия перекреста хромосом генетическими методами цитологи, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими χ-образных фигур – хиазм (χ-греческая буква «хи»). В 1909 г. Ф.Янсенс высказал предположение, что хиазмы свя­заны с обменом участками хромосом. Впоследствии эти картины послужили дополнительным аргументом в пользу гипотезы генетического перекреста хромосом, выдвинутой Т.Морганом в 1911 г.

Механизм перекреста хромосом связан с поведением гомоло­гичных хромосом в профазе I мейоза.

Кроссинговер происходит на стадии четырех хроматид и приурочен к образованию хиазм.

Если в одном биваленте произошел не один обмен, а два и более, то и этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды.

Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости.

Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе I мейоза при образовании гамет. Однако существует соматический, или митотический, кроссинговер, который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей.

Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда удается наблюдать синапсис гомологичных хромосом и фигуры, похо­жие на хиазмы, но при этом редукции числа хромосом не наблюдается.

Гипотезы о механизме кроссинговера. По поводу механизма перекреста существует несколько гипотез, но ни одна из них не объясняет полностью фактов рекомбинации генов и наблюдаемых при этом цитологических картин.

Согласно гипотезе, предложенной Ф.Янсенсом и развитой К.Дарлингтоном, в процессе синапсиса гомологичных хромосом в биваленте создается динамическое напряжение, возникающее в связи со спирализацией хромосомных нитей, а также при взаимном обвивании гомологов в биваленте. В силу этого напряжения одна из четырех хроматид рвется. Разрыв, нарушая равновесие в биваленте, приводит к компенсирующему разрыву в строго идентичной точке какой-либо другой хроматиды этого же бивалента. Затем происходит реципрокное воссоединение разорванных концов, приводящее к кроссинговеру. Согласно этой гипотезе хиазмы непосредственно связаны с кроссинговером.

По гипотезе К.Сакса хиазмы не являются результатом кроссинговера: сначала образуются хиазмы, а затем происходит обмен. При расхождении хромосом к полюсам вследствие механического напряжения в местах хиазм происходят разрывы и обмен соответствующими участками. После обмена хиазма исчезает.

Смысл другой гипотезы, предложенной Д.Беллингом и модернизированной И.Ледербергом, заключается в том, что процесс репликации ДНК может реципрокно переключаться с одной нити на другую; воспроизведение, начавшись на одной матрице, с какой-то точки переключается на матричную нить ДНК.

Факторы, влияющие на перекрест хромосом. На кроссинговер влияет множество факторов как генетической природы, так и внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х - и Y -хромосомами. Если бы он происходил, то хромосомный механизм определения пола постоянно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y -специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участков) - гомология нуклеотидных последовательностей.

Для абсолютного большинства высших эукариот характерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблюдается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контро­ля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено.

Обнаружены гены, выполняющие роль запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нормальную конъюгацию хромосом в зиготене.

Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается.

В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские, хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.

Законы наследования Моргана и вытекающие из них принципы наследственности. Огромную роль в создании и развитии генетики сыграли работы Т.Моргана. Он автор хромосомной теории наследственности. Им были открыты законы наследования: наследование признаков, сцепленных с полом, сцепленное наследование.

Из этих законов вытекает следующие принципы наследственности:

1. Фактор-ген есть определённый локус хромосомы.

2. Аллели гена расположены в идентичных локусах гомологичных хромосом.

3. Гены расположены в хромосоме линейно.

4. Кроссинговер – регулярный процесс обмена генами между гомологичными хромосомами.

Мобильные элементы генома. В 1948 г. американская исследовательница Мак-Клинток открыла у кукурузы гены перемещающиеся из одного участка хромосомы в другой и назвала феномен транспозицией, а сами гены контролириующими элементами (КЭ). 1.Эти элементы могут перемещаться из одного сайта в другой; 2. их встраивание в данный район влияет на активность генов расположенных рядом; 3. утрата КЭ в данном локусе превращает прежде мутабильный локус в стабильный; 4. в сайтах, в которых присутствуют КЭ, могут возникать делеции, транслокации, транспозиции, инверсии, а также разрывы хромосом. В 1983 г. за открытие мобильных генетических элементов Нобелевская премия была присуждена Барбаре Мак-Клинток.

Наличие мобильных элементов в геномах имеет разнообразные последствия:

1. Перемещения и внедрение мобильных элементов в гены может вызывать мутации;

2. Изменение состояния активности генов;

3. Формирование хромосомных перестроек;

4. Формирование теломер.

5. Участие в горизонтальном переносе генов;

6. Транспозоны на основе Р-элемента используют для трансформации у эукариот, клонирования генов, поиска энхансеров и т.д.

У прокариот существуют три типа мобильных элементов – IS-элементы (инсерции), транспозоны, и некоторые бактериофаги. IS-элементы встраиваются в любой участок ДНК, часто вызывают мутации, разрушая кодирующие или регуляторные последовательности, влияют на экспрессию соседних генов. Бактериофаг может вызывать мутации в результате встраивания.

Механизм наследования сцепленных генов, а также местоположение некоторых сцепленных генов установил американский генетик и эмбриолог Т. Морган. Он показал, что закон независимого наследования, сформулированный Менделем, действителен только в тех случаях, когда гены, несущие независимые признаки, локализованы в разных негомологичных хромосомах. Если же гены находятся в одной и той же хромосоме, то наследование признаков происходит совместно, т. е. сцепленно. Это явление стали называть сцепленным наследованием, а также законом сцепления или законом Моргана.

Закон сцепления гласит : сцепленные гены, расположеные в одной хромосоме, наследуются совместно (сцепленно).Группа сцепления - все гены одной хромосомы. Число групп сцепления равно количеству хромосом в гаплоидном наборе. Например, у человека 46 хромосом - 23 группы сцепления, у гороха 14 хромосом - 7 групп сцепления, у плодовой мушки дрозофилы 8 хромосом - 4 группы сцепления.Неполное сцепление генов - результат кроссинговера между сцепленными генами , поэтому полное сцепление генов возможно у организмов, в клетках которых кроссинговер в норме не происходит.

ХРОМОСОМНАЯ ТЕОРИЯ МОРГАНА. ОСНОВНЫЕ ПОЛОЖЕНИЯ.

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

1)гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;

2)каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

3)гены расположены в хромосомах в определенной линейной последовательности;

4)гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

5)сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;

6)каждый вид имеет характерный только для него набор хромосом - кариотип.

Наследование, сцепленное с полом - это наследование какого-либо гена, находящегося в половых хромосомах. При наследственности, связанной с Y-хромосомой, признак или болезнь проявляется исключительно у мужчины, поскольку эта половая хромосома отсутствует в хромосомном наборе женщины. Наследственность, связанная с Х-хромосомой, может быть доминантной или рецессивной в женском организме, но она всегда присутствует в мужском, поскольку в нем насчитывается только одна Х-хромосома. Наследование болезни сцепленное с полом, связанно, главным образом, с половой Х-хромосомой. Большинство наследственных болезней (тех или иных патологических признаков), связанных с полом, передаются рецессивно. Таких болезней насчитывается около 100. Женщина-носительница патологического признака сама не страдает, так как здоровая Х-хромосома доминирует и подавляет Х-хромосому с патологическим признаком, т.е. компенсирует неполноценность данной хромосомы. При этом болезнь проявляется только у лиц мужского пола. По рецессивному сцепленному с Х-хромосомой типу, передаются: дальтонизм (красно-зелёная слепота), атрофия зрительных нервов, куриная слепота, миопия Дюшена, синдром «курчавых волос» (возникает в результате нарушения обмена меди, повышения её содержания в тканях, проявляется слабоокрашенными, редкими и выпадающими волосами, умственной отсталостью и т.д.), дефект ферментов переводящих пуриновые основания в нуклеотиды (сопровождается нарушением синтеза ДНК в виде синдрома Леша-Найена, проявляющегося умственной отсталостью, агрессивным поведением, членовредительством), гемофилия А (в результате недостатка антигемофильного глобулина - фактора VIII), гемофилия В (в результате дефицита фактора Кристмаса - фактора IX) и т.д. По доминантному сцепленному с Х-хромосомой типу передаются гипофосфатемический рахит (не поддающийся лечению витаминами D2 и D3), коричневая эмаль зубов и др. Данные заболевания развиваются у лиц и мужского, и женского пола.

Полное и неполное сцепление генов.

Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть: полным, если между генами, относящимися к одной группе сцепления, рекомбинация невозможна и неполным, если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

Генетические карты хромосом.

Это схемы относительного расположения сцепленных между собой

наследственных факторов - генов. Г. к. х. отображают реально

существующий линейный порядок размещения генов в хромосомах (см. Цитологические карты хромосом) и важны как в теоретических исследованиях, так и при проведении селекционной работы, т.к. позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Имея Г. к. х., можно по наследованию «сигнального» гена, тесно сцепленного с изучаемым, контролировать передачу потомству генов, обусловливающих развитие трудно анализируемых признаков; например, ген, определяющий эндосперм у кукурузы и находящийся в 9-й хромосоме, сцеплен с геном, определяющим пониженную жизнеспособность растения.

85. Хромосомный механизм наследования пола. Цитогенетические методы определения пола.

Пол характеризуется комплексом признаков, определяемых генами, расположенными в хромосомах. У видов с раздельнополыми особями хромосомный комплекс самцов и самок неодинаков, цитологически они отличаются по одной паре хромосом, ее назвали половыми хромосомами . Одинаковые хромосомы этой пары назвали X(икс)- хромосомами . Непарную, отсутствующую у другого пола- Y (игрек)- хромосомой ; остальные, по которым нет различий аутосомами (А). У человека 23 пары хромосом. Из них 22 пары аутосом и 1 пара половых хромосом. Пол с одинаковыми хромосомами XX, образующий один тип гамет (с X- хромосомой), называют гомогаметным, другой пол, с разными хромосомами XY, образующий два типа гамет (с X-хромосомой и с Y-хромосомой), - гетерогаметным . У человека, млекопитающих и других организмов гетерогаметный пол мужской ; у птиц, бабочек - женский.

X- хромосомы, помимо генов, определяющих женский пол, содержат гены, не имеющие отношения к полу. Признаки, определяемые хромосомами, называются признаками, сцепленными с полом. У человека такими признаками являются дальтонизм (цветная слепота) и гемофилия (несвертываемость крови). Эти аномалии рецессивны, у женщин такие признаки не проявляются, если даже эти гены несет одна из X- хромосом; такая женщина является носительницей и передает их с Х - хромосомой своим сыновьям.

Цитогенетический метод определения пола. Он основан на микроскопическом изучении хромосом в клетках человека. Применение цито генетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. В качестве экспресс- метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х- хромосом. При увеличении количества Х - хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа хромосом. При уменьшении числа хромосом тельце отсутствует. В мужском кариотипе Y- хромосома может быть обнаружена по более интенсивной люмисценции по сравнению с другими хромосомами при обработке их акрихинипритом и изучении в ультрафиолетовом свете.

Особенности строения хромосом. Уровни организации наследственного материала. Гетеро- и эухроматин.

Морфология хромосом

При микроскопическом анализе хромосом, прежде всего, видны различия их по форме и величине. Строение каждой хромосомы сугубо индивидуальное. Можно заметить также, что хромосомы обладают общими морфологическими признаками. Они состоят из двух нитей - хроматид, расположенных параллельно и соединенных между собой в одной точке, названной центромерой или первичной перетяжкой. На некоторых хромосомах можно видеть и вторичную перетяжку. Она является характерным признаком, позволяющим идентифицировать отдельные хромосомы в клетке. Если вторичная перетяжка расположена близко к концу хромосомы, то дистальный участок, ограниченный ею, называют спутником. Хромосомы, содержащие спутник, обозначаются как АТ-хромосомы. На некоторых из них в телофазе происходит образование ядрышек.
Концевые участки хромосом имеют особую структуру и называются теломерами. Теломерные районы обладают определенной полярностью, препятствующей их соединению друг с другом при разрывах или со свободными концами хромосом.

Участок хроматиды (хромосомы) от теломеры до центромеры называют плечом хромосомы. Каждая хромосома имеет два плеча. В зависимости от соотношения длин плеч выделяют три типа хромосом: 1) метацентрические (равноплечие); 2) субметацентрические (неравноплечие); 3) акроцентрические, у которых одно плечо очень короткое и не всегда четко различимо. (р - короткое плечо, q - длинное плечо). Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков: гистонов и протомите (в половых клетках), которые образуют нуклеопротеиновый комплекс-хроматин, получивший свое название за способность окрашиваться основными красителями. Белки составляют значительную часть вещества хромосом. На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки.
Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная роль. Кроме того, эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах.

Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, редупликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. Помимо ДНК и белков в составе хромосом обнаруживаются также РНК, липиды, полисахариды, ионы металлов.

Открыта Г.Т. Морганом и его учениками в 1911-1926 г. Они доказали, что III закон Менделя требует дополнений: наследственные задатки не всегда наследуются независимо, иногда они передаются целыми группами - сцеплены друг с другом. Установленные закономерности расположения генов в хромосомах способствовали выяснению цитологических механизмов законов Грегора Менделя и разработке генетических основ теории естественного отбора. Такие группы могут перемещаться в другую гомологичную хромосому при конъюгации во время профазы 1 мейоза.

Положения хромосомной теории:

  • 1)Передача наследственной информации связана с хромосомами, в которых линейно, в определенных локусах лежат гены.
  • 2)Каждому гену одной гомологичной хромосомы соответствует аллельный ген другой гомологичной хромосомы.
  • 3)Аллельные гены могут быть одинаковыми у гомозигот и разными у гетерозигот.
  • 4)Каждая особь в популяции содержит только 2 аллели, а гаметы - одну аллель.
  • 5)В фенотипе признак проявляется при наличии 2-х аллельных генов.
  • 6)Степень доминирования у множественных аллелей возрастает от крайнего рецессивного до крайнего доминантного. Например, у кролика окраска шерсти зависит от рецессивного гена «с» - ген альбинизма. Доминантным по отношению к «с» будет ген «сh"» - гималайской (горностаевой) окраски - белое тело, разовые глаза, темные кончики носа, ушей, хвоста и конечностей. Доминантный по отношению к «сh» будет ген «сhс» - шиншилловый - светло-серый. Еще более доминантным будет ген «са» - агути, темной окраски. Самым доминантным будет ген С - черной окраски, он доминирует над всеми аллелями - С, са, сhс, сh, с.
  • 7)Доминантность и рецессивность аллелей не абсолютны, а относительны. Один и тот же признак может наследоваться по доминантному ИЛИ рецессивному типу. Например, наследование эпикантуса у негроидов - доминантно, у монголоидов - рецессивно, у европеоидов - отсутствует эта аллель. Заново возникающие аллели рецессивны. Старые - доминантны.
  • 8)Каждая пара хромосом характерна определенным набором генов, которые составляют группы сцепления, часто наследуются совместно.
  • 9)Число групп сцепления равно числу хромосом в гаплоидном наборе.
  • 10)Перемещение генов из одной гомологичной хромосомы в другую в про фазе 1 мейоза происходит с определенной частотой, которая обратно пропорциональна расстоянию между генами - чем меньше расстояние между генами, тем больше сила сцепления между ними, и наоборот.
  • 11)Единицей расстояния между генами является морганида, которая равна 1 % кроссинговерного потомства. Например, ген резус-фактора и ген овалоцитоза расположены друг от друга на 3 морганиды, а ген дальтонизма и гемофилии - на 10 морганид.

Положения хромосомной теории были доказаны цитологически и экспериментально Морганом на плодовой мушке дрозофиле.

Наследование признаков, гены которых находятся в Х и У - половых хромосомах, называется наследованием, сцепленным с полом. Например, у человека в Х-половой хромосоме находятся рецессивныe гены дальтонизма и гемофилии. Рассмотрим наследование гемофилии у человека:

h - ген гемофилии (кровоточивости);

Н - ген нормальной свертываемости крови.

Рецессивный признак проявляется у мальчиков, у девочек он подавляется аллельным доминантным Н-геном.

Наследование признака происходит перекрестно - от пола к полу, от матери - сыновьям, от отца - дочерям.

Внешнее проявление признака - фенотип - зависит от нескольких условий:

  • 1)наличия 2-х наследственных задатков от обоих родителей;
  • 2)от способа взаимодействия между аллельными генами (доминантный, рецессивный, кодоминирование);
  • 3)от условий взаимодействия между неаллельными генами (комплементарное, эпистатическое взаимодействие, полимерия, плейотропия);
  • 4)от места расположения гена (в аутосоме или половой хромосоме);
  • 5)от условий внешней среды.

Роль хромосом в передаче наследственной информации была доказана благодаря: а) открытию генетического определения пола; б) установлению групп сцепления признаков, соответствующие количеству хромосом; в) построении генетических, а затем и цитологических карт хромосом. Обоснование хромосомной теории представлены в работах Т. Моргана, К. Бриджеса и А. Стертеванта.

В частности, школой Моргана установлены закономерности, которые со временем были подтверждены и углубленные позже, известные как хромосомная теория наследственности.

Основные положения хромосомной теории наследственности:

гены содержатся в хромосомах;

Каждый ген в хромосоме занимает определенное место - локус. Гены в хромосомах расположены линейно;

Между гомологичными хромосомами может происходить обмен аллелями гена;

Расстояние между генами в хромосоме пропорционально процентные кроссинговера между ними;

Во время мейоза, который происходит только при образовании гамет, диплоидное число хромосом уменьшается вдвое;

Между генами гомологичных родительских и материнских групп сцепления могут происходить изменения благодаря кроссинговера;

Сила сцепления между генами обратно пропорциональна расстоянию между ними. Расстояние между генами измеряется в процентах кроссинговера. Один процент кроссинговера соответствует одной морга- Ниде;

Каждый биологический вид характеризуется специфическим набором хромосом - кариотипом.

Одним из первых весомых доказательств роли хромосом в явлениях наследственности стало открытие закономерности, согласно которой пол наследуется как менделирующих признак, то есть по законам Менделя. У всех млекопитающих (в том числе и у человека), большинства животных и дрозофилы женские особи в соматических клетках имеют две Х-хромосомы, а мужские - X- и Y-хромосомы. В этих организмов все яйцеклетки содержат X-хромосомы и в этом отношении они одинаковы (гомогаметным), в отличие от сперматозоидов, которые образуются двух типов: один содержит Х-хромосому, второй - У-хромосому (гетерогаметным). Поэтому при оплодотворении возможны две комбинации:

1) яйцеклетка с X-хромосомой оплодотворяется сперматозоидом с Х-хромосомой, образуется зигота с двумя Х-хромосомами.

С такой зиготы развивается организм женского пола;

2) яйцеклетка с Х-хромосомой оплодотворяется сперматозоидом с Y-хромосомой. В зиготе объединяются X- и Y-хромосомы.

С такой зиготы развивается организм мужского пола. Таким образом сочетание половых хромосом в зиготе, а следовательно, и развитие пола человека, млекопитающих и дрозофилы зависит от того, каким сперматозоидом будет оплодотворена яйцеклетка. Пол, имеющий две одинаковые хромосомы - гомогаметным, так как все гаметы одинаковы, а пол с различными половыми хромосомами - гетерогаметным. У человека, млекопитающих, дрозофилы гомогаметным является женский пол, а мужской - гетерогаметным, у птиц и бабочек, наоборот, гомогаметным - мужская, гетерогаметным - женская.

У человека признаки, наследуемые через У-хромосому, могут быть только у лиц мужского пола, а через Х-хромосому - у обоих полов. Особь женского пола может быть как гомо-, так и гетерозиготной по генам, которые локализованы в X-хромосоме. Рецессивные аллели генов у нее проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, то все локализованные в ней гены, даже рецессивные, проявляются в фенотипе - организм гемизиготний.

Известно, что у человека некоторые патологические состояния наследуются сцеплено с полом. К ним, в частности, относится гемофилия (пониженная скорость свертывания крови), что приводит повышенное кровотечение. Аллель гена, который контролирует нормальную свертываемость крови (Я) и его аллельные пара "ген гемофилии" (А) содержится в X-хромосоме, причем первый доминирует над другим. Запись генотипа женщины гетерозиготной по этому признаку имеет вид - ХНХh. Такая женщина будет нормальный процесс свертывания крови, но будет носителем этого недостатка. У мужчин только одна Х-хромосома. Итак, если у него в Х-хромосоме содержится аллель Н, то он будет иметь нормальный процесс свертывания крови, а если аллель А, то болеть гемофилией; Y-хромосома не несет генов, которые определяют механизм свертывания крови. Аналогичным образом наследуется дальтонизм (аномалия зрения, когда человек не различает цветов, чаще всего не отличает красный от зеленого).