Государство

Торий — новая «батарейка» в ядерной энергетике. Торий: спасет ли он планету от энергетического кризиса? Торий 232 откуда известен его период полураспада

Что будет, если мы скажем, будто избыток выбросов вредных веществ в результате сгорания бензина или обычного дизеля топлива можно решить, используя атомный двигатель? Впечатлит ли вас это? Если нет, то можно даже не начинать читать этот материал, а вот для тех, кому данная тема интересна, милости просим, потому, как речь у нас пойдет об атомном двигателе для автомобиля, который работает на изотопе тория-232.

Удивительно, но именно торий-232 обладает самым большим периодом полураспада среди изотопов тория и при этом является наиболее распространенным. Поразмыслив над этим фактом, ученые американской компании Laser Power Systems заявили о возможности сконструировать двигатель, который использует торий в качестве топлива и при этом является абсолютно реальным проектом на сегодняшний день.

Уже давно было определено, что торий, в случае использования его как топлива, имеет сильные позиции и при «работе» выделяет колоссальное количество энергии. По подсчетам ученых, всего 8 грамм тория-232 позволят работать двигателю в течение 100 лет, а 1 грамм произведет больше энергии, чем 28 тыс. литров бензина . Согласитесь, подобное не может не впечатлять.

Как сообщает генеральный директор Laser Power Systems Чарльз Стивенс, команда специалистов уже начала эксперименты, используя небольшое количество тория, однако самая ближайшая цель это создание необходимого для технологического процесса лазера. Описывая принцип работы подобного двигателя, можно привести в пример работу классической электростанции. Так, лазер, по планам ученых, будет нагревать емкость с водой, а полученный пар пойдет на работу мини-турбин.


Однако, каким бы прорывным не казалось заявление специалистов LPS , сама идея использовать атомный ториевый двигатель не нова. В 2009 году, Лорен Кулеусус показал мировому сообществу свое видение будущего и продемонстрировал концепт-кар Cadillac World Thorium Fuel Concept Car. И, несмотря на его футуристический внешний вид, главным отличием концепт-кара было наличие источника энергии для автономной работы, который использовал в качестве топлива торий.

«Учёными должен быть найден более дешёвый источник энергии в сравнении с углём, обладающий низким значением выброса диоксида углерода при сгорании или его отсутствием. В противном случае данная идея вовсе не сможет получить своего развития» - Роберт Харгрейв, специалист в области изучения свойств тория


На данный момент специалисты Laser Power Systems полностью сосредоточили свои силы на создании серийного образца двигателя для массового производства. Впрочем, не исчезает один из самых важных вопросов, как отреагируют на подобное новшество страны и компании, лоббирующие «нефтяные» интересы. Ответ подскажет только время.

Интересное:

  • Природные запасы тория превышают запасы урана в 3-4 раза
  • Специалисты называют торий и в частности торий -232 «ядерным топливом будущего»

В 1815 году знаменитый шведский химик Йенс Якоб Берцелиус заявил об открытии нового элемента, который он назвал торием в честь Тора, бога-громовержца и сына верховного скандинавского бога Одина. Однако в 1825 году обнаружилось, что открытие это было ошибкой. Тем не менее название пригодилось — его Берцелиус дал новому элементу, который он обнаружил в 1828 году в одном из норвежских минералов (сейчас этот минерал называется торит). Этому элементу, возможно, предстоит большое будущее, где он сможет сыграть в атомной энергетике роль, не уступающую по важности главному ядерному топливу — урану.

Плюсы и минусы
+ Тория на Земле в несколько раз больше, чем урана
+ Не нужно разделять изотопы
+ Радиоактивное заражение при добыче тория существенно меньше (за счет более короткоживущего радона)
+ Можно использовать уже существующие тепловые реакторы
+ Торий имеет лучшие термомеханические свойства, чем уран
+ Торий менее токсичен, чем уран
+ При использовании тория не образуются минорные актиниды (долгоживущие радиоактивные изотопы)
- В процессе облучения тория образуются гамма-излучающие изотопы, что создает трудности при переработке топлива

Дальние родственники бомбы

Атомная энергетика, на которую сейчас возлагается столько надежд, — это побочная ветвь военных программ, основными целями которых было создание атомного оружия (а чуть позднее реакторов для подводных лодок). В качестве ядерного материала для изготовления бомб можно было выбрать из трех возможных вариантов: уран-235, плутоний-239 или уран-233.

Так выглядит ториевый ядерный цикл, иллюстрирующий превращение тория в высокоэффективное ядерное топливо — уран-233.

Уран-235 содержится в природном уране в очень небольшом количестве — всего 0,7% (остальные 99,3% составляет изотоп 238), и его нужно выделить, а это дорогостоящий и сложный процесс. Плутоний-239 не существует в природе, его нужно нарабатывать, облучая нейтронами уран-238 в реакторе, а затем выделяя его из облученного урана. Таким же образом можно получать уран-233 путем облучения нейтронами тория-232.


В 1960-х планировалось замкнуть ядерный цикл по урану и плутонию с использованием примерно 50% АЭС на тепловых реакторах и 50% на быстрых. Но разработка быстрых реакторов вызвала трудности, так что в настоящее время эксплуатируется лишь один такой реактор — БН-600 на Белоярской АЭС (и построен еще один — БН-800). Поэтому сбалансированную систему можно создать из ториевых тепловых реакторов и примерно 10% быстрых реакторов, которые будут восполнять недостающее топливо для тепловых.

Первые два способа в 1940-х годах были реализованы, а вот с третьим физики решили не возиться. Дело в том, что в процессе облучения тория-232 помимо полезного урана-233 образуется еще и вредная примесь — уран-232 с периодом полураспада в 74 года, цепочка распадов которого приводит к появлению таллия-208. Этот изотоп излучает высокоэнергетичные (жесткие) гамма-кванты, для защиты от которых требуются толстенные свинцовые плиты. Кроме того, жесткое гамма-излучение выводит из строя управляющие электронные цепи, без которых невозможно обойтись в конструкции оружия.

Ториевый цикл

Тем не менее о тории не совсем забыли. Еще в 1940-х годах Энрико Ферми предложил нарабатывать плутоний в реакторах на быстрых нейтронах (это более эффективно, чем на тепловых), что привело к созданию реакторов EBR-1 и EBR-2. В этих реакторах уран-235 или плутоний-239 являются источником нейтронов, превращающих уран-238 в плутоний-239. При этом плутония может образовываться больше, чем «сжигается» (в 1,3−1,4 раза), поэтому такие реакторы называются «размножителями».


Другая научная группа под руководством Юджина Вигнера предложила свой проект реактора-размножителя, но не на быстрых, а на тепловых нейтронах, с торием-232 в качестве облучаемого материала. Коэффициент воспроизводства при этом уменьшился, но конструкция была более безопасной. Однако существовала одна проблема. Ториевый топливный цикл выглядит таким образом. Поглощая нейтрон, торий-232 переходит в торий-233, который быстро превращается в протактиний-233, а он уже самопроизвольно распадается на уран-233 с периодом полураспада 27 дней. И вот в течение этого месяца протактиний будет поглощать нейтроны, мешая процессу наработки. Для решения этой проблемы хорошо бы вывести протактиний из реактора, но как это сделать? Ведь постоянная загрузка и выгрузка топлива сводит эффективность наработки почти к нулю. Вигнер предложил очень остроумное решение — реактор с жидким топливом в виде водного раствора солей урана. В 1952 году в Национальной лаборатории в Оак-Ридже под руководством ученика Вигнера, Элвина Вайнберга, был построен прототип такого реактора — Homogeneous Reactor Experiment (HRE-1). А вскоре появилась еще более интересная концепция, идеально подходившая для работы с торием: это реактор на расплавах солей, Molten-Salt Reactor Experiment. Топливо в виде фторида урана было растворено в расплаве фторидов лития, бериллия и циркония. MSRE проработал с 1965 по 1969 год, и хотя торий там не использовался, сама концепция оказалась вполне работоспособной: использование жидкого топлива повышает эффективность наработки и позволяет выводить из активной зоны вредные продукты распада.


Жидкосолевой реактор позволяет намного более гибко управлять топливным циклом, чем обычные тепловые станции, и использовать топливо с наибольшей эффективностью, выводя вредные продукты распада из активной зоны и добавляя новое топливо по мере необходимости.

Путь наименьшего сопротивления

Тем не менее жидкосолевые реакторы (ЖСР) не получили распространения, поскольку обычные тепловые реакторы на уране оказались дешевле. Мировая атомная энергетика пошла по наиболее простому и дешевому пути, взяв за основу проверенные водо-водяные реакторы под давлением (ВВЭР), потомки тех, которые были сконструированы для подводных лодок, а также кипящие водо-водяные реакторы. Реакторы с графитовым замедлителем, такие как РБМК, представляют собой другую ветвь генеалогического древа — они происходят от реакторов для наработки плутония. «Основным топливом для этих реакторов является уран-235, но его запасы хотя и довольно значительны, тем не менее ограничены, — объясняет «Популярной механике» начальник отдела системных стратегических исследований Научно-исследовательского центра «Курчатовский институт» Станислав Субботин. — Этот вопрос начал рассматриваться еще в 1960-х годах, и тогда планируемым решением этой проблемы считалось введение в ядерный топливный цикл отвального урана-238, запасов которого почти в 200 раз больше. Для этого планировалось построить множество реакторов на быстрых нейтронах, которые бы нарабатывали плутоний с коэффициентом воспроизводства 1,3−1,4, чтобы избыток можно было использовать для питания тепловых реакторов. Быстрый реактор БН-600 был запущен на Белоярской АЭС — правда, не в режиме бридера. Недавно там же был построен и еще один — БН-800. Но для построения эффективной экосистемы атомной энергетики таких реакторов нужно примерно 50%».


Все радиоактивные изотопы, которые встречаются в природе в естественных условиях, принадлежат к одному из трех семейств (радиоактивных рядов). Каждый такой ряд — это цепочка ядер, связанных последовательным радиоактивным распадом. Родоначальники радиоактивных рядов — долгоживущие изотопы уран-238 (период полураспада 4,47 млрд лет), уран-235 (704 млн лет) и торий-232 (14,1 млрд лет). Цепочки заканчиваются стабильными изотопами свинца. Существует еще один ряд, начинающийся с нептуния-237, но период его полураспада слишком мал — всего лишь 2,14 млн лет, поэтому в природе он не встречается.

Могучий торий

Вот тут как раз на сцену и выходит торий. «Торий часто называют альтернативой урану-235, но это совершенно неправильно, — говорит Станислав Субботин. — Сам по себе торий, как и уран-238, вообще не является ядерным топливом. Однако, поместив его в нейтронное поле в самом обычном водо-водяном реакторе, можно получить отличное топливо — уран-233, которое затем использовать для этого же самого реактора. То есть никаких переделок, никакого серьезного изменения существующей инфраструктуры не нужно. Еще один плюс тория — распространенность в природе: его запасы как минимум втрое превышают запасы урана. Кроме того, нет необходимости в разделении изотопов, поскольку при попутной добыче вместе с редкоземельными элементами встречается только торий-232. Опять же, при добыче урана происходит загрязнение окружающей местности относительно долгоживущим (период полураспада 3,8 суток) радоном-222 (в ряду тория радон-220 — короткоживущий, 55 секунд, и не успевает распространиться). Кроме того, торий имеет отличные термомеханические свойства: он тугоплавкий, менее склонен к растрескиванию и выделяет меньше радиоактивных газов при повреждении оболочки ТВЭЛ. Наработка урана-233 из тория в тепловых реакторах примерно в три раза более эффективна, чем плутония из урана-235, так что наличие как минимум половины таких реакторов в экосистеме атомной энергетики позволит замкнуть цикл по урану и плутонию. Правда, быстрые реакторы все равно будут нужны, поскольку коэффициент воспроизводства у ториевых реакторов не превышает единицы».


На производство 1 ГВт в течение года требуется: 250 т природного урана (содержат 1,75 т урана-235) требуется добыть 215 т обедненного урана (в том числе 0,6 т урана-235) уходят в отвалы; 35 т обогащенного урана (из них 1,15 т урана-235) загружаются в реактор; отработанное топливо содержит 33,4 т урана-238, 0,3 т урана-235, 0,3 т плутония-239, 1 т продуктов распада. 1 т тория-232 при загрузке в жидкосолевой реактор полностью конвертируется в 1 т урана-233; 1 т продуктов распада, из них 83% - короткоживущие изотопы (распадаются до стабильных примерно за десять лет).

Однако у тория есть и один достаточно серьезный минус. При нейтронном облучении тория уран-233 оказывается загрязненным ураном-232, который испытывает цепочку распадов, приводящую к жесткому гамма-излучающему изотопу таллий-208. «Это сильно затрудняет работу по переработке топлива, — объясняет Станислав Субботин. — Но с другой стороны, облегчает обнаружение такого материала, уменьшая риск хищений. Кроме того, в замкнутом ядерном цикле и при автоматизированной обработке топлива это не имеет особого значения».


Термоядерное зажигание

Эксперименты по использованию ториевых ТВЭЛов в тепловых реакторах ведутся в России и других странах — Норвегии, Китае, Индии, США. «Сейчас самое время вернуться к идее жидкосолевых реакторов, — считает Станислав Субботин. — Химия фторидов и фторидных расплавов хорошо изучена благодаря производству алюминия. Для тория реакторы на расплавах солей гораздо более эффективны, чем обычные водо-водяные, поскольку позволяют гибко производить загрузку и вывод продуктов распада из активной зоны реактора. Более того, с их помощью можно реализовать гибридные подходы, используя в качестве источника нейтронов не ядерное топливо, а термоядерные установки — хотя бы те же токамаки. К тому же жидкосолевой реактор позволяет решить проблему с минорными актинидами — долгоживущими изотопами америция, кюрия и нептуния (которые образуются в облученном топливе), «дожигая» их в реакторе-мусорщике. Так что в перспективе нескольких десятилетий в атомной энергетике без тория нам не обойтись».

Изотопная распространённость 100 % Период полураспада 1,405(6)·10 10 лет Продукты распада 228 Ra Родительские изотопы 232 Ac (β −)
232 Pa (β +)
236 U () Спин и чётность ядра 0 + Канал распада Энергия распада α-распад 4,0816(14) МэВ 24 Ne, 26 Ne ββ 0,8376(22) МэВ

Вместе с другими природными изотопами тория , торий-232 появляется в ничтожных количествах в результате распада изотопов урана .

Образование и распад

Торий-232 образуется в результате следующих распадов:

\mathrm{^{232}_{\ 89}Ac} \rightarrow \mathrm{^{232}_{\ 90}Th} + e^- + \bar{\nu}_e; \mathrm{^{232}_{\ 91}Pa} + e^- \rightarrow \mathrm{^{232}_{\ 90}Th} + \bar{\nu}_e; \mathrm{^{236}_{\ 92}U} \rightarrow \mathrm{^{232}_{\ 90}Th} + \mathrm{^{4}_{2}He}.

Распад тория-232 происходит по следующим направлениям:

\mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{228}_{\ 88}Ra} + \mathrm{^{4}_{2}He};

энергия испускаемых α-частиц 3 947,2 кэВ (в 21,7 % случаев) и 4 012,3 кэВ (в 78,2 % случаев) .

\mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{208}_{\ 80}Hg} + \mathrm{^{24}_{10}Ne}; \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{206}_{\ 80}Hg} + \mathrm{^{26}_{10}Ne}; \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{232}_{\ 92}U} + 2e^- + 2 \bar{\nu}_e.

Применение

\mathrm{^{1}_{0}n} + \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{233}_{\ 90}Th} \xrightarrow{\beta^-\ 1,243\ MeV} \mathrm{^{233}_{\ 91}Pa} \xrightarrow{\beta^-\ 0,5701\ MeV} \mathrm{^{233}_{\ 92}U}.

См. также

Напишите отзыв о статье "Торий-232"

Примечания

  1. G. Audi, A.H. Wapstra, and C. Thibault (2003). «». Nuclear Physics A 729 : 337-676. DOI :10.1016/j.nuclphysa.2003.11.003 . Bibcode : .
  2. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 . Bibcode : .
  3. Rutherford Appleton Laboratory . . . (англ.) (Проверено 4 марта 2010)
  4. World Nuclear Association . . . (англ.) (Проверено 4 марта 2010)
  5. (2004) «». Nature 17 : 117–120. (англ.) (Проверено 4 марта 2010)
Легче:
торий-231
Торий-232 является
изотопом тория
Тяжелее:
торий-233
Изотопы элементов · Таблица нуклидов

Отрывок, характеризующий Торий-232

– Это Машины божьи люди, – сказал князь Андрей. – Они приняли нас за отца. А это единственно, в чем она не повинуется ему: он велит гонять этих странников, а она принимает их.
– Да что такое божьи люди? – спросил Пьер.
Князь Андрей не успел отвечать ему. Слуги вышли навстречу, и он расспрашивал о том, где был старый князь и скоро ли ждут его.
Старый князь был еще в городе, и его ждали каждую минуту.
Князь Андрей провел Пьера на свою половину, всегда в полной исправности ожидавшую его в доме его отца, и сам пошел в детскую.
– Пойдем к сестре, – сказал князь Андрей, возвратившись к Пьеру; – я еще не видал ее, она теперь прячется и сидит с своими божьими людьми. Поделом ей, она сконфузится, а ты увидишь божьих людей. C"est curieux, ma parole. [Это любопытно, честное слово.]
– Qu"est ce que c"est que [Что такое] божьи люди? – спросил Пьер
– А вот увидишь.
Княжна Марья действительно сконфузилась и покраснела пятнами, когда вошли к ней. В ее уютной комнате с лампадами перед киотами, на диване, за самоваром сидел рядом с ней молодой мальчик с длинным носом и длинными волосами, и в монашеской рясе.
На кресле, подле, сидела сморщенная, худая старушка с кротким выражением детского лица.
– Andre, pourquoi ne pas m"avoir prevenu? [Андрей, почему не предупредили меня?] – сказала она с кротким упреком, становясь перед своими странниками, как наседка перед цыплятами.
– Charmee de vous voir. Je suis tres contente de vous voir, [Очень рада вас видеть. Я так довольна, что вижу вас,] – сказала она Пьеру, в то время, как он целовал ее руку. Она знала его ребенком, и теперь дружба его с Андреем, его несчастие с женой, а главное, его доброе, простое лицо расположили ее к нему. Она смотрела на него своими прекрасными, лучистыми глазами и, казалось, говорила: «я вас очень люблю, но пожалуйста не смейтесь над моими ». Обменявшись первыми фразами приветствия, они сели.
– А, и Иванушка тут, – сказал князь Андрей, указывая улыбкой на молодого странника.
– Andre! – умоляюще сказала княжна Марья.
– Il faut que vous sachiez que c"est une femme, [Знай, что это женщина,] – сказал Андрей Пьеру.
– Andre, au nom de Dieu! [Андрей, ради Бога!] – повторила княжна Марья.
Видно было, что насмешливое отношение князя Андрея к странникам и бесполезное заступничество за них княжны Марьи были привычные, установившиеся между ними отношения.
– Mais, ma bonne amie, – сказал князь Андрей, – vous devriez au contraire m"etre reconaissante de ce que j"explique a Pierre votre intimite avec ce jeune homme… [Но, мой друг, ты должна бы быть мне благодарна, что я объясняю Пьеру твою близость к этому молодому человеку.]
– Vraiment? [Правда?] – сказал Пьер любопытно и серьезно (за что особенно ему благодарна была княжна Марья) вглядываясь через очки в лицо Иванушки, который, поняв, что речь шла о нем, хитрыми глазами оглядывал всех.
Княжна Марья совершенно напрасно смутилась за своих. Они нисколько не робели. Старушка, опустив глаза, но искоса поглядывая на вошедших, опрокинув чашку вверх дном на блюдечко и положив подле обкусанный кусочек сахара, спокойно и неподвижно сидела на своем кресле, ожидая, чтобы ей предложили еще чаю. Иванушка, попивая из блюдечка, исподлобья лукавыми, женскими глазами смотрел на молодых людей.
– Где, в Киеве была? – спросил старуху князь Андрей.
– Была, отец, – отвечала словоохотливо старуха, – на самое Рожество удостоилась у угодников сообщиться святых, небесных тайн. А теперь из Колязина, отец, благодать великая открылась…
– Что ж, Иванушка с тобой?
– Я сам по себе иду, кормилец, – стараясь говорить басом, сказал Иванушка. – Только в Юхнове с Пелагеюшкой сошлись…
Пелагеюшка перебила своего товарища; ей видно хотелось рассказать то, что она видела.
– В Колязине, отец, великая благодать открылась.
– Что ж, мощи новые? – спросил князь Андрей.
– Полно, Андрей, – сказала княжна Марья. – Не рассказывай, Пелагеюшка.
– Ни… что ты, мать, отчего не рассказывать? Я его люблю. Он добрый, Богом взысканный, он мне, благодетель, рублей дал, я помню. Как была я в Киеве и говорит мне Кирюша юродивый – истинно Божий человек, зиму и лето босой ходит. Что ходишь, говорит, не по своему месту, в Колязин иди, там икона чудотворная, матушка пресвятая Богородица открылась. Я с тех слов простилась с угодниками и пошла…
Все молчали, одна странница говорила мерным голосом, втягивая в себя воздух.
– Пришла, отец мой, мне народ и говорит: благодать великая открылась, у матушки пресвятой Богородицы миро из щечки каплет…
– Ну хорошо, хорошо, после расскажешь, – краснея сказала княжна Марья.
– Позвольте у нее спросить, – сказал Пьер. – Ты сама видела? – спросил он.

Ториевый топливный цикл – ядерный топливный цикл, использующий изотопы Тория-232, как ядерное сырье. Торий-232 в ходе реакции разделения в реакторе переносит трансмутацию в искусственный изотоп Уран-233, применяющийся в качестве ядерного топлива. В отличие от природного урана, природный торий содержит лишь очень небольшие доли делящегося вещества (пример – Торий-231), которого недостаточно для запуска цепной ядерной реакции. Для запуска топливного цикла необходимо наличие дополнительного делящегося вещества или другого источника нейтронов. В ториевом реакторе Торий-232 абсорбирует нейтроны для того, чтобы, в конце концов, произвести Уран-233. В зависимости от проекта реактора и топливного цикла, созданный изотоп Урана-233 может делиться в самом реакторе или отделяться химическим способом из отработанного ядерного топлива и переплавляться в новое ядерное топливо.

Ториевый топливный цикл имеет несколько потенциальных преимуществ над урановым топливным циклом, в том числе – большая распространенность, лучшие физические и ядерные свойства, отсутствующие у плутония и других актинидов, и лучше сопротивление распространению ядерного оружия, которое связано с использованием легководных реакторов, а не реакторов на расплавах солей.

История изучения тория

Единственный источник тория – желтые полупрозрачные зерна монацита (фосфата церия)

Споры по поводу ограниченности мировых запасов урана стали причиной для появления начального интереса к ториевому топливному циклу. Стало очевидным, что запасы урана – исчерпаемы, и торий может заменить уран в качестве ядерного топливного сырья. Однако, большинство стран обладают относительно богатыми залежами урана и исследования ториевого топливного цикла проводятся крайне медленно. Серьезным исключением является Индия и ее трехступенчатая ядерная программа. В XXI веке потенциал тория для сопротивления распространению ядерного оружия и характеристики отработанного топливного сырья привели к повторному интересу к ториевому топливному циклу.

Национальная лаборатория Оук-Ридж в 1960-х годах использовала Экспериментальный Реактор на Расплавах Солей, применявший Уран-233 в качестве делящегося вещества в целях эксперимента и демонстрации работы Реактора-Размножителя на Расплавах Солей, работающего по принципу ториевого цикла. Эксперименты с Реактором на Расплавах Солей возможности тория, используя растворенный в расплавленной соли фторид (IV) тория. Это уменьшало потребность в производстве топливных элементов. Программа РРС была свернута в 1976 году после увольнения ее куратора Элвина Вайнберга.

В 2006 году Карло Руббиа предложил концепт энергоусилителя или «управляемого ускорителя», который виделся ему инновацией и безопасным способом производства ядерной энергии, использующего существующие технология ускорения энергии. Идея Руббиа предлагает возможность сжигать высокорадиоактивные ядерные отходы и производить энергию из натурального тория и обедненного урана.

Кирк Соренсен, бывший ученый НАСА и Начальник по ядерным технологиям компании «Teledyne Brown Engineering», долгое время продвигал идею ториевого топливного цикла, в частности – Реакторов на Жидком Фториде Тория (РЖФТ). Он первым стал исследовать ториевые реакторы еще во время работы в НАСА, когда оценивали различные концепции электростанций для лунных колоний. В 2006 году Соренсен основал сайт «Energyfromthorium.com» для информирования и продвижения данной технологии.

В 2011 году Массачусетский Технологический Институт сделал вывод, что, несмотря на малое число барьеров для ториевого топливного цикла, текущее состояние легководных реакторов практически не дает никакого стимула для появления такого цикла на рынке. Из этого следует, что шанс ториевого цикла вытеснить традиционный урановый цикл в условиях нынешнего рынка атомной энергетики крайне мал, несмотря на потенциальные выгоды.

Ядерные реакции с торием

Во время ториевого цикла Торий-232 захватывает нейтроны (это происходит как в быстрых, так и в тепловых реакторах) для преобразования в Торий-233. Обычно это приводит к излучению электронов и антинейтрино при?-распаде и появлению Протактиния-233, Затем, при втором?-распаде и повторном излучении электронов и антинейтрино образовывается Уран-233, использующийся в виде топлива.

Отходы после продуктов деления

Ядерное деление производит радиоактивные продукты распада, который могут иметь период полураспада от нескольких дней до более 200 000 лет. В соответствии с некоторыми исследованиями токсикологии, ториевый цикл может полностью перерабатывать актиноидные отходы и лишь излучать отходы после продуктов деления, и только через несколько столетий отходы ториевого реактора станут менее токсичными, чем урановые руды, которые могут применяться для производства обедненного уранового топлива для легководного реактора аналогичной мощности.

Актинидные отходы

В реакторе, где нейтроны бьют по делящемуся атому (например, определенные урановые изотопы), может произойти как разделение ядра, так и захват нейтронов и трансмутация атома. В случае с Ураном-233 трансмутация приводит к производству полезного ядерного топлива, а также – трансурановые отходы. Когда Уран-233 абсорбирует нейтрон, может происходить реакция деления или преобразование в Уран-234. Шанс разделения или поглощения теплового нейтрона примерно равен 92 %, в то время как соотношение сечения захвата и сечение деления нейтронов в случае с Ураном-233 равен примерно 1:12. Эта цифра – больше, чем соответствующие отношения у Урана-235 (примерно 1:6), Плутона-239 или Плутона-241 (оба имеют отношения примерно 1:3). В результате появляется меньше трансурановых отходов, чем в реакторе с традиционным ураново-плутониевым топливным циклом.

Уран-233, как и большинство актинидов с различным числом нейтронов, не делится, но при «поимке» нейтронов появляется делящийся изотоп Уран-235. Если реакция деления или улавливания нейтронов у делящегося изотопа не происходит, появляется Уран-236, Нептуний-237, Плутоний-238 и, в конце концов, делящийся изотоп Плутония-239 и более тяжелые изотопы плутония. Нептуний-237 может быть удален и храниться, как отходы, или сохраниться и трансмутировать в плутоний, который лучше будет делиться, в то время, как остатки превратятся в Плутоний-242, затем – америций и кюрий. Их, в свою очередь, можно удалить, как отходы, или вернуть в реакторы для дальнейшей трансмутации и деления.

Однако Протактиний-231 с периодом полураспада в 32700 лет формируется через реакции с Торием-232, несмотря на то, что он не является трансурановым отходом, является главной причиной появления радиоактивных отходов с длительным периодом распада.

Заражение Ураном-232

Уран-232 также появляется в ходе реакции между быстрыми нейтронами и Ураном-233, Протактинием-233 и Торием-232.

Уран-232 имеет относительно малый период полураспада (68,9 лет) и некоторые продукты распады излучает гамма-излучение с высокой энергии, так же, как и Радон-224, Висмут-212 и частично – Таллий-208.

Ториевый цикл производит жесткое гамма-излучение, которое повреждает электронику, ограничивая его использование в качестве пускового механизма для ядерных бомб. Уран-232 нельзя химически отделить от Урана-233, находящегося в отработанном ядерном топливе. Однако, химическое отделение тория от урана убирает продукты распада Тория-228 и радиацию из остальной цепи полураспада, которая постепенно приводит к повторному аккумулированию Тория-228. Заражение также можно предотвратить, используя Реактор-Размножитель на Расплавах Солей и отделяя Протактиний-233 перед его распадом до Урана-233. Жесткие гамма-излучения также могут создавать радиобиологическую опасность, требующую работы в режиме телеприсутствия.

Ядерное топливо

В качестве ядерного топлива торий похож на Уран-238, который составляет большую часть натурального и обедненного урана. Показатель ядерного сечения поглощаемого теплового нейтрона и резонансного интеграла (среднее число ядерного сечения нейтронов с промежуточной энергией) для Тория-232 примерно равно трем, и составляет одну треть от соответствующего показателя Урана-238.

Преимущества

Торий, по приблизительным оценкам, в три-четыре раза чаще встречается в земной коре, чем уран, хотя при этом на самом деле данные о его запасах крайне ограничены. Текущие потребности в тории удовлетворяется за счет вторичных продуктов из редкоземельных элементов, добываемых из монацитовых песков.

Хотя показатель ядерного сечения делящихся тепловых нейтронов у Урана-233 сравним с Ураном-235 и Плутонием-239, у него гораздо более низкий уровень ядерного сечения улавливаемых нейтронов, чем у последних двух изотопов, что приводит к меньшему числу абсорбированных неделящихся нейтронов и росту нейтронного баланса. В конце концов, соотношение освобожденных и абсорбированных нейтронов у Урана-233 больше двух в широком спектре энергий, в том числе – тепловом. В результате, топливо на основе тория может стать основным компонентом теплового реактора-размножителя. Реактор-размножитель с ураново-плутониевым циклом вынужден использовать спектр быстрых нейтронов, так как в тепловом спектре один нейтрон абсорбируется Плутонием-239, и в среднем при реакции исчезает 2 нейтрона.

Топливо на основе тория также демонстрирует отличные физические и химические свойства, что позволяет улучшить технические данные реактора и могильника. В сравнении с диоксидом урана, преобладающим топливом для реактора, диоксид тория имеет более высокую температуру влияния, теплопроводность и более низкий коэффициент теплового расширения. Диоксид тория также показывает лучшую химическую стабильность и, в отличие от диоксида урана, не способен к дальнейшему окислению.

Так как Уран-233, производимый в ториевом топливе, серьезно загрязнен Ураном-232 в предлагаемых концептах реакторов, ториевое отработанное топливо обладает сопротивлением к распространению оружия. Уран-232 не может быть химически отделен от Урана-233 и имеет несколько продуктов распада, испускающих высокоэнергетическое гамма-излучение. Эти протоны с высокой энергией несут радиоактивную опасность, что вызывает необходимость удаленной работы с отделенным ураном и ядерного детектирования подобных веществ.

Вещества на основе уранового отработанного топлива с большим периодом полураспада (от 1000 до 1000000 лет) несут радиоактивную опасность из-за наличия плутония и других младших актинидов, после которых снова появляются долгоживущие продукты деления. Одного нейтрона, пойманного Ураном-238, достаточно для создания трансурановых элементов, в то время как пять таких «захватов» необходимо для аналогичного процесса с Торием-232. 98-99 % ториевого ядерного цикла приводит к делению Урана-233 или Урана-235, поэтому производится меньше долгоживущих трансурановых элементов. Из-за этого торий выглядит потенциально привлекательной альтернативой урану в смешанном оксидном топливе для предельного уменьшения производства трансурановых веществ и максимального объема распавшегося плутония.

Недостатки

Существует несколько препятствий для применения тория в качестве ядерного топлива, в частности – для твердотопливных реакторов.

В отличие от урана, встречающийся в природе торий, как правило, одноядерный и не содержит делящихся изотопов. Делящееся вещество, как правило – Уран-233, Уран-235 или плутоний, должны быть добавлены для достижения критичности. Вместе с высокой температурой спекания, необходимого для диоксида тория, это усложняет производство топлива. Национальная Лаборатория Оук Ридж проводило опыты над тетрафторидом тория, в качестве топлива для реактора на расплавах солей в 1964—1969 годах. Ожидалось, что будет облегчен процесса производства и разделения веществ от загрязнителей для замедления или остановки цепной реакции.

При однократном топливном цикле (например, переработка Урана-233 в самом реакторе) более серьезное выгорание необходимо для достижение желательного нейтронного баланса. Хотя диоксид тория способен вырабатывать 150000-170000 мегаватт-суток/тонну на АЭС в Форте Сэн-Рэйна и Экспериментальной АЭС в Юлихе, существуют серьезные сложности достижения таких показателей на легководных реакторах, которые составляют подавляющее большинство среди существующих реакторов.

При однократном ториевом топливном цикле оставшийся Уран-233 остается в отработанном топливе в виде долгоживущего изотопа.

Другое препятствие связано с тем, что ториевый топливный цикл требует сравнительно больше времени для превращения Тория-232 в Уран-233. Период полураспада Протактиния-233 составляет примерно 27 дней, и это – гораздо дольше, чем период полураспада Нептуния-239. В результате, основным веществом в ториевом топливе является прочный Протактиний-239. Протактиний-239 – сильный поглотитель нейтронов и, хотя может произойти преобразование в делящийся Уран-235, требуется вдвое больше поглощенных нейтронов, что разрушает нейтронный баланс и увеличивает вероятность производства трансурановых веществ.

С другой стороны, если твердый торий используется при замкнутом топливном цикле, где перерабатывается Уран-233, для производства топливо необходимо удаленное взаимодействие из-за высокого уровня радиации, провоцируемого продуктами распада Урана-232. Также это верно, если говорить о переработанном тории из-за наличия Тория-228, являющегося частью цепочкой распадов. Более того, в отличие от проверенной технологии переработки уранового топлива, технология по переработке тория сейчас только развивается.

Хотя наличие Урана-232 и осложняет дело, существуют опубликованные документы, где показывается то, что Уран-233 использовался при ядерных испытаниях. США проверяли сложную бомбу с содержанием Урана-233 и плутония в ядре во время операции «Teapot» в 1955 году, хотя при этом были достигнут гораздо меньший тротиловый эквивалент.

Несмотря на то, что топливо на основе тория производит гораздо меньше трансурановых веществ, чем аналоги на основе урана, иногда может вырабатываться некий объем долгоживущих актинидов с длительным радиоактивным фоном, в частности – Протактиний-231.

Что будет, если мы скажем, будто избыток выбросов вредных веществ в результате сгорания бензина или обычного дизеля топлива можно решить, используя атомный двигатель? Впечатлит ли вас это? Если нет, то можно даже не начинать читать этот материал, а вот для тех, кому данная тема интересна, милости просим, потому, как речь у нас пойдет об атомном двигателе для автомобиля, который работает на изотопе тория-232.

Удивительно, но именно торий-232 обладает самым большим периодом полураспада среди изотопов тория и при этом является наиболее распространенным. Поразмыслив над этим фактом, ученые американской компании Laser Power Systems заявили о возможности сконструировать двигатель, который использует торий в качестве топлива и при этом является абсолютно реальным проектом на сегодняшний день.

Уже давно было определено, что торий, в случае использования его как топлива, имеет сильные позиции и при «работе» выделяет колоссальное количество энергии. По подсчетам ученых, всего 8 грамм тория-232 позволят работать двигателю в течение 100 лет, а 1 грамм произведет больше энергии, чем 28 тыс. литров бензина . Согласитесь, подобное не может не впечатлять.

Как сообщает генеральный директор Laser Power Systems Чарльз Стивенс, команда специалистов уже начала эксперименты, используя небольшое количество тория, однако самая ближайшая цель это создание необходимого для технологического процесса лазера. Описывая принцип работы подобного двигателя, можно привести в пример работу классической электростанции. Так, лазер, по планам ученых, будет нагревать емкость с водой, а полученный пар пойдет на работу мини-турбин.

Однако, каким бы прорывным не казалось заявление специалистов LPS, сама идея использовать атомный ториевый двигатель не нова. В 2009 году, Лорен Кулеусус показал мировому сообществу свое видение будущего и продемонстрировал концепт-кар Cadillac World Thorium Fuel Concept Car. И, несмотря на его футуристический внешний вид, главным отличием концепт-кара было наличие источника энергии для автономной работы, который использовал в качестве топлива торий.

«Учёными должен быть найден более дешёвый источник энергии в сравнении с углём, обладающий низким значением выброса диоксида углерода при сгорании или его отсутствием. В противном случае данная идея вовсе не сможет получить своего развития» - Роберт Харгрейв, специалист в области изучения свойств тория

На данный момент специалисты Laser Power Systems полностью сосредоточили свои силы на создании серийного образца двигателя для массового производства. Впрочем, не исчезает один из самых важных вопросов, как отреагируют на подобное новшество страны и компании, лоббирующие «нефтяные» интересы. Ответ подскажет только время.


Интересное:

  • Природные запасы тория превышают запасы урана в 3-4 раза
  • Специалисты называют торий и в частности торий -232 «ядерным топливом будущего»