Интернет

Сверхновая 2 типа. Влияние на крупномасштабную структуру межзвёздного газа галактики

Довольно редко люди могут наблюдать такое интересное явление как сверхновая звезда. Но это не обыкновенное рождение звезды, ведь в нашей галактике ежегодно рождаются до десяти звезд. А сверхновая звезда - явление, которое можно наблюдать только раз в сто лет. Так ярко и красиво умирают звезды.

Чтобы понять, почему происходит взрыв сверхновой, нужно вернуться к самому рождению звезды. В пространстве летает водород, который постепенно собирается в облака. Когда облако достаточно большое, в его центре начинает собираться уплотнённый водород, и температура постепенно повышается. Под действием гравитации собирается ядро будущей звезды, где благодаря повышенной температуре и возрастающему тяготению начинает проходить реакция термоядерного синтеза. От того, сколько водорода сможет притянуть к себе звезда, зависит ее будущий размер - от красного карлика до голубого гиганта. Со временем устанавливается баланс работы звезды, внешние слои давят на ядро, а ядро расширяется благодаря энергии термоядерного синтеза.

Звезда представляет собой своеобразный и, как у любого реактора, когда-нибудь у нее закончится топливо - водород. Но чтобы мы увидели, как взорвалась сверхновая звезда, должно пройти еще немного времени, ведь в реакторе вместо водорода образовалось другое топливо (гелий), которое начнет сжигать звезда, превращая его в кислород, а затем в углерод. И так будет продолжаться, пока в ядре звезды не образуется железо, которое при термоядерной реакции не выделяет энергию, а потребляет ее. При таких условиях и может произойти взрыв сверхновой звезды.

Ядро становится тяжелее и холоднее, в результате более легкие верхние слои начинают падать на него. Снова запускается синтеза, но на этот раз быстрее обычного, в результате чего звезда просто взрывается, раскидывая в окружающее пространство свою материю. В зависимости от после нее могут тоже остаться известные из них - (вещество с неимоверно высокой плотностью, которое имеет очень большую и может излучать свет). Такие образования остаются после очень больших звезд, которые сумели произвести термоядерный синтез до очень тяжелых элементов. Звезды поменьше оставляют после себя нейтронные или железные малые звезды, которые почти не излучают света, но тоже имеют высокую плотность материи.

Новые и сверхновые звезды тесно связаны, ведь смерть одной из них может означать рождение новой. Этот процесс продолжается бесконечно. Сверхновая звезда разносит в окружающее пространство миллионы тон материи, которая снова собирается в облака, и начинается формирование нового небесного тела. Ученые утверждают, что все тяжелые элементы, которые находятся в нашей Солнечной системе, Солнце во время своего рождения "украло" у взорвавшейся когда-то звезды. Природа удивительна, и смерть чего-то одного всегда означает рождение чего-то нового. В открытом космосе материя распадается, а в звездах образуется, создавая великий баланс Вселенной.

По расчетам астрономов, в 2022 году с Земли можно будет наблюдать ярчайший взрыв сверхновой звезды в созвездии Лебедя. Вспышка будет способна затмить сияние большинства звезд на небе! Взрыв сверхновой - редкое явление, но человечество будет наблюдать феномен не впервые. Чем же так увлекательно это явление?

УЖАСНЫЕ ЗНАМЕНИЯ ПРОШЛОГО

Так, 5000 лет назад жители Древнего Шумера были в ужасе - боги показали, что они разгневаны, явив знаменье. На небосводе засияло второе солнце, так что даже ночью было светло как днем! Пытаясь отвратить беду, шумеры приносили богатые жертвы и неустанно молились богам - и это возымело действие. Ан, бог неба, отвратил свой гнев - второе солнце стало меркнуть и скоро вообще исчезло с небосвода.

Так ученые реконструируют события, произошедшие более пяти тысяч лет назад, когда над Древним Шумером вспыхнула сверхновая звезда. О тех событиях стало известно из клинописной таблички, содержащей рассказ о «втором божестве-солнце», показавшемся в южной стороне неба. Астрономы нашли следы звездного катаклизма - от напугавшей шумеров сверхновой осталась туманность Паруса X.

По современным научным данным, ужас древних жителей Месопотамии был во многом оправдан - случись взрыв сверхновой несколько ближе к Солнечной системе, и все живое на поверхности нашей планеты было бы выжжено радиацией.

Так уже однажды случилось, когда 440 миллионов лет назад вспышка сверхновой звезды произошла в относительно близких к солнцу районах космоса. За тысячи световых лет от Земли огромная звезда превратилась в сверхновую, и нашу планету обожгло смертоносное излучение. Палеозойские монстры, которых постигло несчастье жить в то время, могли видеть, как ослепительное сияние, внезапно возникшее на небе, затмило солнце - и это было последнее, что они видели в своей жизни. За несколько секунд излучение сверхновой уничтожило озоновый слой планеты, а радиация убила жизнь на поверхность Земли. К счастью, поверхность материков нашей планеты была в ту эпоху почти лишена обитателей, а жизнь скрывалась в океанах. Толща воды защищала от излучения сверхновой, но все равно погибло более 60% морских животных!

Вспышка сверхновой звезды - один из самых грандиозных катаклизмов во Вселенной. Взрывающееся светило выделяет невероятное количество энергии - в течение короткого времени одна звезда излучает света больше, чем миллиарды звезд галактики.

ЭВОЛЮЦИЯ СВЕРХНОВЫХ

Далекие вспышки сверхновых звезд астрономы давно наблюдали в мощные телескопы. Первоначально это явление воспринималось как непонятный курьез, но в конце первой четверти XX столетия астрономы научились определять межгалактические расстояния. Тогда стало ясно, из какой невообразимой дали приходит на Землю свет сверхновых и какую невероятную силу имеют эти вспышки. Но какова природа этого феномена?

Звезды формируются из космических скоплений водорода. Такие облака газа занимают огромные пространства и могут иметь колоссальную массу, равную сотням солнечных масс. Когда такое облако оказывается достаточно плотным, начинают действовать гравитационные силы, вызывающие сжатие газа, которое вызывает сильный нагрев. По достижении определенного предела в нагретом и сжатом центре облака начинаются термоядерные реакции - так «зажигаются» звезды.

Вспыхнувшее светило имеет долгую жизнь: водород в недрах звезды превращается в гелий (а затем и в иные элементы таблицы Менделеева вплоть до железа) миллионы и даже миллиарды лет. При этом чем больше звезда, тем короче ее жизнь. Красные карлики (так называется класс малых звезд) имеют продолжительность жизни в триллион лет, в то время как звезды-гиганты могут «выгореть» за тысячные доли этого срока.

Звезда «живет», пока сохраняется «баланс сил» между силами гравитации, сжимающими ее, и термоядерными реакциями, которые излучают энергию и стремятся «растолкать» вещество. Если звезда достаточно велика (имеет массу более массы Солнца), наступает момент, когда термоядерные реакции в звезде слабеют («горючее» к тому времени оказывается выгоревшим) и силы гравитации оказываются сильнее. В этот момент сила, сжимающая ядро звезды становится столь сильной, что давление излучения больше не в состоянии удерживать вещество от сжатия. Происходит катастрофически быстрый коллапс - за несколько секунд объем ядра звезды падает в 100000 раз!

Стремительное сжатие звезды приводит к тому, что кинетическая энергия вещества переходит в тепло и температура поднимается до сотен миллиардов Кельвинов! Светимость гибнущей звезды при этом возрастает в несколько миллиардов раз - и «взрыв сверхновой» выжигает все в соседних областях космоса. В ядре гибнущей звезды электроны «вдавливаются» в протоны, так что внутри ядра остаются практически одни нейтроны.

ЖИЗНЬ ПОСЛЕ ВЗРЫВА

Поверхностные же слои звезды взрываются, причем в условиях гигантских температур и чудовищного давления идут реакции с образованием тяжелых элементов (вплоть до урана). И тем самым сверхновые выполняют свою великую (с точки зрения человечества) миссию - делают возможным появление во Вселенной жизни. «Почти все элементы, из которых состоим мы сами и наш мир, возникли благодаря взрывам сверхновых», - утверждают ученые. Все, что нас окружает: кальций у нас в костях, железо в эритроцитах, кремний в чипах наших компьютеров и медь в проводах, - все это вышло из адских топок взрывающихся сверхновых. Большинство химических элементов появились во Вселенной исключительно во время взрывов сверхновых звезд. А атомы тех немногих элементов (от гелия до железа), которые звезды синтезируют, находясь в «спокойном» состоянии, могут стать основой для появления планет лишь после того, как они при взрыве сверхновой были выброшены в межзвездное пространство. Поэтому и сам человек, и все вокруг него состоит из остатков взрывов древних сверхновых.

Оставшееся после взрыва ядро становится нейтронной звездой. Это удивительный космический объект малого объема, но чудовищной плотности. Диаметр обычной нейтронной звезды составляет 10-20 км, но при этом плотность вещества невероятна - 665 миллионов тонн на один кубический сантиметр! При такой плотности кусочек нейтрониума (вещества, из которого состоит такая звезда) размером со спичечную головку будет весить во много раз больше, чем пирамида Хеопса, а чайная ложка из нейтрониума будет иметь массу более миллиарда тонн. Нейтрониум также обладает невероятной прочностью: кусок нейтрониума (если бы таковой оказался в руках человечества) невозможно разбить на части никаким физическим воздействием - любой человеческий инструмент окажется абсолютно бесполезен. Попытка отрезать или оторвать кусок нейтрониума будет столь же безнадежна, как отпилить кусок металла воздухом.

БЕТЕЛЬГЕЙЗЕ — САМАЯ ОПАСНАЯ ЗВЕЗДА

Впрочем, не все сверхновые превращаются в нейтронные звезды. Когда масса звезды превосходит определенный предел (так называемый второй предел Чандрасекара), в процессе взрыва сверхновой остается слишком большая масса вещества и гравитационное давление не в состоянии сдерживать ни что. Процесс становится необратим - все вещество стягивается в одну точку, и образуется черная дыра - провал, безвозвратно поглощающий все, даже солнечный свет.

Может ли угрожать Земле вспышка сверхновой? Увы, ученые отвечают утвердительно. Звезда Бетельгейзе - близкий, по космическим меркам, сосед Солнечной системы, может взорваться в самом скором времени. По словам научного сотрудника Государственного астрономического института Сергея Попова, «Бетельгейзе действительно является одним из лучших кандидатов, и, безусловно, самым известным, в близкие (по времени) сверхновые. Эта массивная звезда находится на финальных стадиях своей эволюции и, вероятнее всего, вспыхнет как сверхновая, оставив после себя нейтронную звезду». Бетельгейзе - светило в двадцать раз тяжелее нашего Солнца и в сто тысяч раз ярче, расположенное примерно в полутысяче световых лет. Поскольку эта звезда достигла финальной стадии своей эволюции, то в ближайшее (по космическим меркам) время она имеет все шансы стать сверхновой. По расчетам ученых, этот катаклизм не должен быть опасен для Земли, но с одной оговоркой.

Дело в том, что излучение сверхновой при взрыве направлено неравномерно - направление излучения определяют магнитные полюса звезды. И если окажется, что один из полюсов Бетельгейзе направлен точно на Землю, то после взрыва сверхновой в нашу Землю вылетит смертоносный поток рентгеновского излучения, способный по меньшей мере уничтожить озоновый слой. К сожалению, на сегодня нет никаких известных астрономам признаков, которые позволили бы предсказать катаклизм и создать «систему раннего оповещения» о взрыве сверхновой. Впрочем, хоть Бетельгейзе и доживает свой срок, звездное время несоизмеримо с человеческим, и, скорее всего, до катастрофы тысячи, если не десятки тысяч лет. Можно надеяться, что за такой срок человечество создаст надежную защиту от вспышек сверхновой.

Взрывы звезд, известные как сверхновые, могут быть настолько яркими, что затмевают галактики, содержащие их.

Like Love Haha Wow Sad Angry

Наблюдая за остатками сверхновой, вспыхнувшей шесть лет назад, астрономы, к их удивлению, выявили на месте взрыва новую звезду, освещающую окружающее ее облако материала. Выводы ученых представлены в журнале Astrophysical Journal Letters .

«Ранее мы никогда не видели, чтобы взрыв такого типа оставался ярким столь продолжительное время, если у него не было какого-либо взаимодействия с водородом, выброшенным звездой до катастрофического события. Но в наблюдениях этой сверхновой нет подписи водорода», – рассказывает Дэн Милисавлевич, ведущий автор исследования из Университета Пердью (США).

В отличие от большинства звездных взрывов, которые исчезают, SN 2012au продолжает сиять благодаря мощному вновь рожденному пульсару. Credit: NASA, ESA, and J. DePasquale

Взрывы звезд, известные как сверхновые, могут быть настолько яркими, что затмевают галактики, содержащие их. Обычно они полностью «исчезают» за несколько месяцев или лет, однако иногда остатки от взрыва «схлопываются» в богатые водородом газовые облака и снова становятся яркими. Но могут ли они вновь засиять без какого-либо вмешательства извне?

По мере того как крупные звезды взрываются, их недра «сворачиваются» до точки, в которой все частицы становятся нейтронами. Если полученная нейтронная звезда имеет магнитное поле и вращается достаточно быстро, она может превратиться в туманность пульсарного ветра. Скорее всего, именно это случилось с SN 2012au, расположенной в галактике NGC 4790 в направлении созвездия Девы.

«Когда туманность пульсара достаточно яркая, она действует как лампочка, освещающая внешние выбросы от предшествующего взрыва. Мы знали, что сверхновые производят быстро вращающиеся нейтронные звезды, но никогда не получали прямых доказательств этого уникального события», – добавил Дэн Милисавлевич.

Изображение пульсара в Парусах, полученное обсерваторией NASA «Chandra». Credit: NASA

SN 2012au изначально оказалась необычной и странной во многих отношениях. Несмотря на то, что взрыв не был достаточно ярким, чтобы его можно было классифицировать как «сверхсветовая» сверхновая, он был чрезвычайно энергичным и долговечным.

«Если в центре взрыва создается пульсар, то он может выталкивать и даже ускорять газ, поэтому через несколько лет мы сможем увидеть, как газ, богатый кислородом, «убегает» с места взрыва SN 2012au», – пояснил Дэн Милисавлевич.

Бьющееся сердце Крабовидной туманности. В ее центре скрывается пульсар. Credit: NASA/ESA

Сверхсветовые сверхновые – обсуждаемая тема в астрономии. Они являются потенциальными источниками гравитационных волн, а также гамма-всплесков и быстрых радиовсплесков. Но понимание процессов, стоящих за этими событиями, сталкивается со сложностью наблюдений, и лишь следующее поколение телескопов поможет астрономам раскрыть тайны этих вспышек.

> Сверхновая звезда

Узнайте, что такое сверхновая звезда : описание взрыва и вспышки звезды, где рождаются сверхновые, эволюция и развитие, роль двойных звезд, фото и исследования.

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые звезды?

Очень часто сверхновые можно заметить в других галактиках. Но в нашем Млечном Пути это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад (последствия взрыва сверхновой).

Что приводит к сверхновой?

Сверхновая звезда рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двойные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Почему исследователи интересуются сверхновыми звездами?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету. Посмотрите видео, в котором раскрываются особенности сверхновых звезд и их взрывов.

Наблюдения вспышек сверхновых

Астрофизик Сергей Блинников об открытии первой сверхновой звезды, остатках после вспышки и современных телескопах

Как их найти сверхновые звезды?

Для процесса поиска сверхновых звезд исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Фото получают при помощи телескопов Хаббл и Чандра.

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Измерение расстояний до небесных тел

Астроном Владимир Сурдин о цефеидах, вспышках сверхновых звезд и скорости расширения Вселенной:

Чем вы можете помочь в исследовании сверхновых звезд?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую! А если говорить точнее, то у вас есть все шансы запечатлеть взрыв сверхновой звезды.

Звезды живут не вечно. Они тоже рождаются и умирают. Некоторые из них, подобно Солнцу, существуют по несколько миллиардов лет, спокойно дотягивают до старости, а потом медленно угасают. Другие проживают куда более короткую и бурную жизнь и к тому же обречены на катастрофическую гибель. Их существование прерывается гигантским взрывом, и тогда звезда превращается в сверхновую. Свет сверхновой озаряет космос: ее взрыв виден на расстоянии многих миллиардов световых лет. Вдруг на небе появляется звезда там, где раньше, казалось бы, ничего и не было. Отсюда и название. Древние считали, что в таких случаях действительно зажигается новая звезда. Сегодня мы знаем, что на самом деле звезда не рождается, а умирает, но название осталось прежним, сверхновая.

СВЕРХНОВАЯ 1987A

В ночь с 23 на 24 февраля 1987 года в одной, из ближайших к нам галактик,. Большом Магеллановом Облаке, отстоящем от нас всего на 163.000 световых лет, в созвездии Золотая Рыба появилась сверхновая. Она стала заметна даже невооруженному глазу, в мае месяце достигла видимой величины +3, а в последующие месяцы постепенно утрачивала яркость, пока вновь не стала невидима без телескопа или бинокля..

Настоящее и прошлое

Сверхновая 1987A, название которой говорит о том, что это была, первая сверхновая, наблюдавшаяся в 1987 году, стала и первой видимой невооруженным глазом с начала эры телескопов. Дело втом, что последний взрыв сверхновой в нашей Галактике наблюдали в далеком 1604-м, когда телескоп, еще не был изобретен.

Но еще важнее, что звезда* 1987A дала современным агрономам первую возможность наблюдать сверхновую на относительно небольшом расстоянии.

А что там было раньше?

Исследование сверхновой 1987A показало, что она относится к типу II. То есть звезда-прародительница или звезда-предшественник, которую удалось обнаружить на более ранних снимках этого, участка неба, оказалась голубым сверхгигантом, чья масса почти в 20 раз превышала массу Солнца. Таким образом, это была очень горячая звезда, которая быстро исчерпала свое ядерное топливо.

Единственное, осталось после гигантского взрыва, - это быстро расширяющееся газовое облако, внутри которого еще никому не удалось разглядеть нейтронную звезду, чьего возникновения теоретически следовало ожидать. Одни астрономы утверждают, что эта звезда все еще окутана выпущенными газами, тогда как другие выдвинули гипотезу, согласно которой вместо звезды там формируется черная дыра.

ЖИЗНЬ ЗВЕЗДЫ

Звезды рождаются в результате гравитационного сжатия облака межзвездного вещества, которое, нагреваясь, доводит свое центральное ядро до температур, достаточных для начала термоядерных реакций. Последующее развитие уже загоревшейся звезды зависит от двух факторов: начальной массы и химического состава, причем первая, в частности, определяет скорость сгорания. Звезды, обладающие более крупной массой, горячее и светлее, но именно поэтому они сгорают раньше. Таким образом, жизнь массивной звезды короче по сравнению со звездой небольшой массы.

Красные гиганты

О звезде, которая сжигает водород, принято говорить, что она находится в «основной фазе». Большая часть жизни любой звезды совпадает именно с этой фазой. Например, Солнце находится в основной фазе уже 5 млрд лет и останется в ней еще надолго, а когда этот период закончится, наше светило перейдет в короткую фазу нестабильности, вслед за которой оно снова стабилизируется, на этот раз в форме красного гиганта. Красный гигант несравнимо крупнее и ярче звезд в основной фазе, но и гораздо холоднее. Антарес в созвездии Скорпион или Бетельгейзе в созвездии Орион - яркие примеры красных гигантов. Их цвет можно сразу же распознать даже невооруженным глазом.

Когда Солнце превратится в красный гигант, его внешние слои «поглотят» планеты Меркурий и Венеру и дойдут до орбиты Земли. В фазе красного гиганта звезды утрачивают значительную часть внешних слоев своей атмосферы, и эти слои образуют планетарную туманность, подобную М57, туманности Кольцо в созвездии Лира, или М27, туманности Гантель в созвездии Лисичка. И та, и другая прекрасно подходят для наблюдения в ваш телескоп.

Дорога к финалу

С этого момента дальнейшая судьба звезды неотвратимо зависит от ее массы. Если она меньше 1,4 массы Солнца, то после окончания ядерного горения такая звезда освободится от своих внешних слоев и сожмется до белого карлика-финальной стадии эволюции звезды с небольшой массой. Пройдут миллиарды лет, пока белый карлик остынет и станет невидим. Напротив, звезда с большой массой (как минимум в 8 раз массивнее Солнца), как только заканчивается водород, выживает за счет сжигания газов тяжелее водорода, таких как гелий и углерод. Пройдя ряд фаз сжатия и расширения, такая звезда через несколько миллионов лет переживает катастрофический взрыв сверхновой, выбрасывая в космос гигантское количество собственного вещества, и превращается в остаток сверхновой. Примерно в течение недели сверхновая превосходит по яркости все звезды своей галактики, а затем быстро темнеет. В центре остается нейтронная звезда, объект небольшого размера, обладающий при этом гигантской плотностью. Если же масса звезды еще больше, в результате взрыва сверхновой появляются не звезды, а черные дыры.

ТИПЫ СВЕРХНОВЫХ

Изучая свет, идущий от сверхновых, астрономы выяснили, что не все они одинаковы и их можно классифицировать зависимости от химических элементов, представленных в их спектрах. Особую роль здесь играет водород: если в спектре сверхновой присутствуют линии, подтверждающие наличие водорода то ее относят к типу II; если же таких линий нет, она причисляется к типу I. Сверхновые типа I разделяют на подклассы la, lb и lс учетом других, элементов спектра.




Разная природа взрывов

Классификация типов и подтипов отражает разнообразие механизмов, лежавших в основе взрыва, и разные типы звезд-предшественниц. Взрывы сверхновых типа таких как SN 1987A, исходят на последней эволюционной стадии звезды, обладающей большой массой (Более чем в 8 раз превышающей массу Солнца).

Сверхновые типа lb и lc возникают в результате коллапса центральных частей массивных звезд, утративших значительную часть их водородной оболочки из-за сильного звездного, ветра или из-за передачи вещества другой звезде в двойной системе.

Разные предшественники

Все сверхновые типа lb, lc и II, происходят от звезд Населения I, то есть от молодых звезд, сосредоточенных в дисках спиральных галактик. Сверхновые типа la, в свою очередь, происходит из старых звезд Населения II, и их можно наблюдать как в эллиптических галактиках, так и в ядрах спиральных галактик. Этот тип сверхновой родом из белого карлика, входящего в состав двойной системы и оттягивающего вещество у своей соседки. Когда масса белого карлика достигает предела устойчивости (его называют пределом Чандрасекара),начинается быстрый процесс слияния ядер углерода, и происходит взрыв, в результате которого звезда выбрасывает наружу большую часть своей массы.

Разная светимость

Разные классы сверхновых отличаются друг от друга не только спектром, но и максимальной светимостью, достигаемой ими во взрыве, и тем, как именно эта светимость снижается с течением времени. Сверхновые типа I, как правило, гораздо ярче сверхновых типа II, но при этом они гораздо быстрее тускнеют. В сверхновых типа I пиковая яркость сохраняется от нескольких часов до нескольких дней, тогда как сверхновые типа II могут просуществовать до нескольких месяцев. Была высказана гипотеза, согласно которой звезды с очень большой массой (в несколько десятков раз превышающей массу Солнца) взрываются еще более бурно, как «гиперновые», а их ядро превращается в черную дыру.

СВЕРХНОВЫЕ В ИСТОРИИ

Астрономы полагают, что в нашей Галактике в среднем взрывается по одной сверхновой каждые 100 лет. Однако количество сверхновых, исторически задокументированных в последние два тысячелетия, не достигает и 10. Одна из причин этого может быть связана с тем, что сверхновые, особенно типа II, взрываются в спиральных ветвях, где межзвездная пыль гораздо плотнее и, соответственно, способна затемнить сияние сверхновой.

Первая из увиденных

Хотя ученые рассматривают и другие кандидатуры, на сегодняшний день принято считать, что первое в истории наблюдение за взрывом сверхновой относится к 185 году н.э. Оно было задокументировано китайскими астрономами. В Китае же отмечались и взрывы галактических сверхновых в 386 и в 393 годах. Затем прошло более 600 лет, и вот, наконец, на небе появилась еще одна сверхновая: в 1006 году в созвездии Волк засияла новая звезда, на этот раз зафиксированная в том числе арабскими и европейскими астрономами. Это ярчайшее светило (чья видимая величина на пике яркости достигала -7,5) оставалось видимым на небе дольше года.
.
Крабовидная туманность

Исключительно яркой была и сверхновая 1054 года (максимальная величина -6), но и ее снова заметили только китайские астрономы, да еще, может быть, американские индейцы. Наверняка это самая известная сверхновая, поскольку ее остаток - Крабовидная туманность в созвездии Телец, которую Шарль Мессье внес в свой каталог под номером 1.

Китайским астрономам мы обязаны и сведениями о появлении в 1181 году сверхновой в созвездии Кассиопея. Там же взорвалась и еще одна сверхновая, на этот раз в 1572 году. Эту сверхновую заметили и европейские астрономы, в том числе Тихо Браге,который описал и ее появление, и дальнейшее изменение ее яркости в своей книге «О новой звезде», чье название и дало начало термину, которым принято обозначать такие звезды.

Сверхновая Тихо

Спустя 32 года, в 1604-м, на небе появилась еще одна сверхновая. Тихо Браге передал эту информацию своему ученику Иоганну Кеплеру, который стал отслеживать «новую звезду» и посвятил ей книгу «О новой звезде в ноге Змееносца». Эта звезда, наблюдаемая и Галилео Галилеем, на сегодняшний день остается последней из видимых невооруженным глазом сверхновых, взорвавшихся в нашей Галактике.

Однако нет никаких сомнений в том, что еще одна сверхновая взорвалась в Млечном Пути, снова в созвездии Кассиопея (это созвездие-рекордсмен насчитывает три галактические сверхновые). Хотя визуальные свидетельства этого события отсутствуют, астрономы нашли остаток звезды и подсчитали, что он должен соответствовать взрыву, произошедшему в 1667 году.

За пределами Млечного Пути, помимо сверхновой 1987A, астрономы наблюдали и вторую сверхновую, 1885, которая взорвалась в галактике Андромеда.

Наблюдение за сверхновыми

Чтобы охотиться за сверхновыми, необходимы терпение и правильный метод.

Первое нужно, так как никто не гарантирует, что вам удастся открыть сверхновую в первый же вечер. Без второго не обойтись, если вы не хотите терять время и действительно стремитесь повысить свои шансы на открытие сверхновой. Основная проблема состоит в том, что физически невозможно предугадать, когда и где произойдет взрыв сверхновой в одной из далеких галактик. Поэтому охотник за сверхновыми должен каждую ночь сканировать небо, проверяя десятки галактик, тщательно отобранных с этой целью.

Что нужно делать

Одна из наиболее распространенных техник состоит в наведении телескопа на ту или иную галактику и сопоставлении ее облика с более ранним изображением (рисунком, фотографией, цифровым изображением), в идеальном варианте приблизительно с тем же увеличением, что и у телескопа, с помощью которого ведутся наблюдения. Если там появилась сверхновая, это сразу бросится вам в глаза. Сегодня многие астрономы-любители располагают оборудованием, достойным профессиональной обсерватории, таким как телескопы с компьютерным управлением и ПЗС-камерами, позволяющими делать фотографии звездного неба сразу в цифровом формате. Но даже в наши дни множество наблюдателей охотятся за сверхновыми, просто наводя телескоп на ту или иную галактику и глядя в окуляр в надежде увидеть, не появится ли где-то еще одна звезда.