Собственный опыт

Основные этапы развития физики. Презентация по физике " великие физики и их открытия"

Хотя история физики как самостоятельной науки началась только в XVII веке, ее истоки относятся к самой глубокой древности, когда люди начали систематизировать первые свои знания об окружающем их мире. До Нового времени они относились к натуральной философии и включали в себя сведения о механике, астрономии и физиологии. Настоящая же история физики началась благодаря опытам Галилея и его учеников. Также фундамент этой дисциплины был заложен Ньютоном.

В XVIII и XIX столетии появились ключевые понятия: энергия, масса, атомы, импульс и т. д. В XX веке стала ясной ограниченность классической физики (помимо нее, зародилась квантовая физика, теория относительности, теория микрочастиц и т. д.). Естественнонаучные знания дополняются и сегодня, так как перед исследователями остается множество нерешенных проблем и вопросов о природе нашего мира и всей вселенной.

Древность

Многие языческие религии Древнего мира основывались на астрологии и знаниях звездочетов. Благодаря их исследованиям ночного неба произошло становление оптики. Накопление астрономических знаний не могло не повлиять на развитие математики. Однако теоретически объяснить причины природных явлений древние не могли. Жрецы приписывали молнии и солнечные затмения божественному гневу, что не имело ничего общего с наукой.

В то же время в Древнем Египте научились измерять длину, вес и угол. Эти знания были необходимы архитекторам при строительстве монументальных пирамид и храмов. Развивалась прикладная механика. Сильны в ней были и вавилоняне. Они же, основываясь на своих астрономических знаниях, стали использовать сутки для измерения времени.

Древнекитайская история физики началась в VII веке до н. э. Накопленный опыт в ремеслах и строительстве был подвергнут научному анализу, результаты которого были изложены в философских сочинениях. Самым известным их автором считается Мо-цзы, живший в IV столетии до н. э. Он предпринял первую попытку сформулировать основополагающий закон инерции. Уже тогда китайцы первыми изобрели компас. Они открыли законы геометрической оптики и знали о существовании камеры-обскуры. В Поднебесной появились зачатки теории музыки и акустики, о которых еще долгое время не подозревали на Западе.

Античность

Античная история физики больше всего известна благодаря греческим философам. Их исследования основывались на геометрических и алгебраических познаниях. Например, пифагорейцы первыми объявили о том, что природа подчиняется универсальным законам математики. Эту закономерность греки видели в оптике, астрономии, музыке, механике и других дисциплинах.

История развития физики с трудом представляется без трудов Аристотеля, Платона, Архимеда, Лукреция Кара и Герона. Их сочинения сохранились до наших времен в достаточно целостном виде. Греческие философы отличались от современников из других стран тем, что они объясняли физические законы не мифическими понятиями, а строго с научной точки зрения. В то же время у эллинов случались и крупные ошибки. К ним можно отнести механику Аристотеля. История развития физики как науки многим обязана мыслителям Эллады уже хотя бы тем, что их натурфилософия оставалась основой международной науки до XVII столетия.

Вклад александрийских греков

Демокрит сформулировал теорию атомов, согласно которой все тела состоят из неделимых и крохотных частиц. Эмпедокл предложил закон сохранения материи. Архимед заложил основы гидростатики и механики, изложив теорию рычага и подсчитав величину выталкивающей силы жидкости. Он же стал автором термина «центр тяжести».

Александрийский грек Герон считается одним из величайших инженеров в человеческой истории. Он создал паровую турбину, обобщил знания об упругости воздуха и сжимаемости газов. История развития физики и оптики продолжилась благодаря Евклиду, исследовавшему теорию зеркал и законы перспективы.

Средневековье

После падения Римской империи настал крах античной цивилизации. Многие знания были преданы забвению. Европа почти на тысячу лет остановилась в своем научном развитии. Храмами знаний стали христианские монастыри, которым удалось сохранить некоторые сочинения прошлого. Однако прогресс тормозила сама церковь. Она подчинила философию богословской доктрине. Мыслители, пытавшиеся выйти за ее пределы объявлялись еретиками и жестоко наказывались инквизицией.

На этом фоне первенство в естественных науках перешло к мусульманам. История возникновения физики у арабов связана с переводом на их язык трудов античных греческих ученых. На их основе мыслители востока сделали несколько собственных важных открытий. К примеру, изобретатель Аль-Джазири описал первый коленчатый вал.

Европейский застой продлился вплоть до Ренессанса. За Средние века в Старом Свете изобрели очки и объяснили возникновение радуги. Немецкий философ XV века Николай Кузанский первым предположил, что Вселенная бесконечна, и тем самым далеко опередил свое время. Через несколько десятилетий Леонардо да Винчи стал первооткрывателем явления капиллярности и закона трения. Также он пытался создать вечный двигатель, но не справившись с этой задачей, начал теоретически доказывать неосуществимость подобного проекта.

Ренессанс

В 1543 году польский астроном Николай Коперник опубликовал главный труд всей своей жизни «О вращении небесных тел». В этой книге впервые в христианском Старом Свете была произведена попытка защитить гелиоцентрическую модель мира, согласно которой Земля крутится вокруг Солнца, а не наоборот, как предполагала принятая церковью геоцентрическая модель Птолемея. Многие ученые физики и их открытия претендуют на звание великих, однако именно появление книги «О вращении небесных тел» считается началом научной революции, за которой последовало возникновение не только современной физики, но и современной науки в целом.

Другой знаменитый ученый Нового времени Галилео Галилей больше всего прославился изобретением телескопа (также ему принадлежит изобретение термометра). Кроме того, он сформулировал закон инерции и принцип относительности. Благодаря открытиям Галилея зародилась совершенно новая механика. Без него история изучения физики застопорилась бы еще на долгое время. Галилею, как и многим его широко мыслившим современникам, пришлось сопротивляться давлению церкви, из последних сил пытавшейся защитить старый порядок.

XVII столетие

Набравший ход рост интереса к науке продолжился и в XVII веке. Немецкий механик и математик стал первооткрывателем в Солнечной системе Свои взгляды он изложил в книге «Новая астрономия», изданной в 1609 году. Кеплер оппонировал Птолемею, заключив, что планеты движутся по эллипсам, а не по окружностям, как считалось еще в античности. Этот же ученый внес значительный вклад в развитие оптики. Он исследовал дальнозоркость и близорукость, выяснив физиологические функции хрусталика глаза. Кеплер ввел понятия оптической оси и фокуса, сформулировал теорию линз.

Француз Рене Декарт создал новую научную дисциплину - аналитическую геометрию. Также он предложил Главным трудом Декарта стала книга «Начала философии», изданная в 1644 году.

Немногие ученые-физики и их открытия известны так, как англичанин Исаак Ньютон. В 1687 году он написал революционную книгу «Математические начала натуральной философии». В ней исследователь изложил закон всемирного тяготения и три закона механики (также ставшие известными как Этот ученый работал над теорией цвета, оптикой, интегральными и дифференциальными исчислениями. История физики, история законов механики - все это тесно связано с открытиями Ньютона.

Новые рубежи

XVIII век подарил науке множество выдающихся имен. Особенно выделяется среди них Леонард Эйлер. Этот швейцарский механик и математик написал более 800 работ по физике и таким разделам, как математический анализ, небесная механика, оптика, теория музыки, баллистика и т. д. Петербургская академия наук признала его своим академиком, из-за чего Эйлер значительную часть жизни провел в России. Именно этот исследователь положил начало аналитической механике.

Интересно что история предмета физика сложилась такой, какой мы ее знаем, благодаря не только профессиональным ученым, но и исследователям-любителям, гораздо больше известным в совершенно другом качестве. Самым ярким примером такого самоучки стал американский политик Бенджамин Франклин. Он изобрел громоотвод, внес большой вклад в изучение электричества и сделал предположение о его связи с явлением магнетизма.

В конце XVIII столетия итальянец Алессандро Вольта создал «вольтов столб». Его изобретение стало первой электрической батарей в истории человечества. Этот век также ознаменовался появлением ртутного термометра, создателем которого был Габриэль Фаренгейт. Другим важным событием изобретательства оказалось изобретение паровой машины, произошедшее в 1784 году. Оно породило новые средства производства и перестройку промышленности.

Прикладные открытия

Если история начала физики развивалась исходя из того, что наука должна была объяснить причину природных явлений, то в XIX веке ситуация значительно изменилась. Теперь у нее появилось новое призвание. От физики стали требовать управления природными силами. В связи с этим стала ускоренно развиваться не только экспериментальная, но и прикладная физика. «Ньютон электричества» Андре-Мари Ампер ввел новое понятие электрического тока. В этой же области работал Майкл Фарадей. Он открыл явление электромагнитной индукции, законы электролиза, диамагнетизм и стал автором таких терминов, как анод, катод, диэлектрик, электролит, парамагнетизм, диамагнетизм и т. д.

Сложились новые разделы науки. Термодинамика, теория упругости, статистическая механика, статистическая физика, радиофизика, теория упругости, сейсмология, метеорология - все они формировали единую современную картину мира.

В XIX столетии возникли новые научные модели и понятия. обосновал закон сохранения энергии, Джеймс Клерк Максвелл предложил собственную электромагнитную теорию. Дмитрий Менделеев стал автором значительно повлиявшей на всю физику периодической системы элементов. Во второй половине века появилась электротехника и двигатель внутреннего сгорания. Они стали плодами прикладной физики, ориентированной на решение определенных технологических задач.

Переосмысление науки

В XX веке история физики, кратко говоря, перешла к тому этапу, когда наступил кризис уже устоявшихся классических теоретических моделей. Старые научные формулы начали противоречить новым данным. К примеру, исследователи выяснили, что скорость света не зависит от, казалось бы, незыблемой системы отсчета. На рубеже столетий были открыты требовавшие подробного объяснения явления: электроны, радиоактивность, рентгеновские лучи.

Вследствие накопившихся загадок произошел пересмотр старой классической физики. Ключевым событием в этой очередной научной революции стало обоснование теории относительности. Ее автором был Альберт Эйнштейн, впервые поведывавший миру о глубинной связи пространства и времени. Возник новый раздел теоретической физики - квантовая физика. В ее становлении приняли участие сразу несколько ученых с мировым именем: Макс Планк, Макс Бон, Пауль Эренфест и другие.

Современные вызовы

Во второй половине XX века история развития физики, хронология которой продолжается и сегодня, перешла на принципиально новый этап. Этот период ознаменовался расцветом исследования космоса. Небывалый скачок сделала астрофизика. Появились космические телескопы, межпланетные зонды, детекторы внеземных излучений. Началось детальное изучение физических данных различных тел Солнечной планеты. С помощью современной техники ученые обнаружили экзопланеты и новые светила, в том числе радиогалактики, пульсары и квазары.

Космос продолжает таить в себе множество неразгаданных загадок. Изучаются гравитационные волны, темная энергия, темная материя, ускорение расширения Вселенной и ее структура. Дополняется теория Большого взрыва. Данные, которые можно получить в земных условиях, несоизмеримо малы по сравнению с тем, сколько работы у ученых есть в космосе.

Ключевые проблемы, стоящие перед физиками сегодня, включают в себя несколько фундаментальных вызовов: разработку квантового варианта гравитационной теории, обобщение квантовой механики, объединение в одну теорию всех известных сил взаимодействия, поиск «тонкой настройки Вселенной», а также точное определение явления темной энергии и темной материи.

Исаака Ньютона называют одним из создателей классической физики. Его открытия объясняют многие явления, причину которых до него не удалось разгадать никому.

Принципы классической механики формировались в течение длительного времени. Многие века учёные пытались создать законы движения материальных тел. И только Ньютон обобщил все накопленные к тому времени знания о движении физических тел с точки зрения классической механики. В 1867 г. им была опубликована работа «Математические начала натуральной философии». В этой работе Ньютон систематизировал все знания о движении и силе, подготовленные до него Галилеем, Гюгенсом и другими учёными, а также знания, известные ему самому. На основе всех этих знаний им были открыты известные законы механики и закон всемирного тяготения. В этих законах устанавливаются количественные зависимости между характером движения тел и силами, действующими на них.

Закон всемирного тяготения

Существует легенда, что к открытию закона тяготения Ньютона подтолкнуло наблюдение падающего с дерева яблока. По крайне мере, об этом упоминает Уильям Стьюкли, биограф Ньютона. Говорят, что ещё в молодости Ньютон задумывался над тем, почему яблоко падает вниз, а не в сторону. Но решить эту задачу ему удалось намного позже. Ньютон установил, что движение всех предметов подчиняется общему закону всемирного тяготения, который действует между всеми телами.

«Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними».

Яблоко падает на землю под воздействием силы, с которой Земля воздействует на него силой своего гравитационного притяжения. А какое ускорение оно получает, Ньютон объяснил с помощью трёх своих законов.

Первый закон Ньютона

Сам великий Ньютон сформулировал этот закон так: «Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».

То есть, если тело неподвижно, то оно так и останется в таком состоянии до тех пор, пока на него не начнёт действовать какая-то внешняя сила. И, соответственно, если тело движется равномерно и прямолинейно, то оно будет продолжать своё движение до момента начала воздействия внешней силы.

Первый закон Ньютона называют ещё Законом инерции. Инерция – это сохранение телом скорости движения, когда на него не оказывают действие никакие силы.

Второй закон Ньютона

Если первый закон Ньютона описывает, как ведёт себя тело, если на него не действуют силы, то второй закон помогает понять, что происходит с телом, когда сила начинает действовать.

Величина силы, действующей на тело, равна произведению массы тела на ускорение, которое получает тело, когда на него начинает действовать сила.

В математическом виде этот закон выгляди так:

Где F – сила, действующая на тело;

m – масса тела;

a – ускорение, которое получает тело под воздействием приложенной силы.

Из этого уравнения видно, что чем больше величина силы, воздействующей на тело, тем большее ускорение оно получит. И чем больше масса тела, на которое воздействует эта сила, тем меньше ускорит своё движение тело.

Третий закон Ньютона

Закон гласит, что если тело А воздействует на тело В с какой-то силой, то и тело В воздействует с такой же силой на тело А. Иными словами сила действия равна силе противодействия.

Например, ядро, вылетающее из пушки, действует на пушку с силой, равной силе, с какой пушка выталкивает ядро. В результате действия этой силы после выстрела пушка откатывается назад.

Из своих общих законов движения Ньютон вывел множество следствий, которые позволили сделать теоретическую механику практически совершенной. Открытый им закон всемирного тяготения связал все планеты, находящиеся на огромном расстоянии друг от друга, в единую систему и положил начало небесной механике, которая изучает движение планет.

С момента создания Ньютоном его законов прошло много времени. Но все эти законы актуальны до сих пор.

Физика – наука, которая изучает структуру и эволюцию мира, а также является основной и важной областью естествознания. Слово «фюзис» с греческого языка означает – природа. Основой всего естествознания и природы являются законы физики.

Уже в 4 веке Аристотель предал большое значение термину «физика». Масштабность мыслей казались самыми величественными. Казалось, что философия стала больше приближена к физике. Очень важный вопрос объединил их в одну стезю – законы возникновения и функционирования Вселенной. Правда, уже после того как наука стала больше доминировать, стали появляться отдельные подразделения физики.
В русский язык эта наука зашла лишь после появления учебников физики. Автором является – М.В. Ломоносов. Вот, что касается, отечественной учебной книги, то автором стал – Страхов. Подобный маневр русского академика изменил всю систему образования того времени.

В нашем веке физику все стали рассматривать каждый по – своему. Ведь, если подумать, то отличие современного общества от того что было ранее, напрямую зависит от физических открытий. Например, исследования электромагнетизма. Подобные прорывы в науке привели к возникновению телефона. Так, если завести речь об автомобиле, то он возник благодаря термодинамике. Компьютер возник вследствие развития электроники.

Подобные процессы не стоят на месте, а лишь усовершенствуются. Новые открытия способствуют улучшению промышленности и техники. Следует задуматься о новых загадках природы, которые требуют объяснения. В этом поможет – физика.

Конечно, не смотря на то, что наука зашла слишком далеко, невозможно объяснить с первого раза все явления природы. Основы физических исследований и методов разрабатываются тщательно, исходя из накопленных знаний.

Существует: экспериментальная и теоретическая физика. Если рассмотреть экспериментальную, то теории и законы опираются только на данные после исследований.

Теоретическая физика обладает несколькими задачами. Любая теория обладает возможностью рассмотреть на экспериментах всю суть «адекватности» явлений. Любое изучение физики несет в себе возможность расшифровать формулировку разнообразных систем.

Области физики многогранны и тем самым интересны. При классической механике верным будет решение, если атомы меньше чем размеры исследуемых объектов. Важно, чтобы гравитационные силы были малы и чтобы скорость объектов была меньше скорости света.

Перенесемся мысленно на сто с хвостиком лет назад и попробуем представить себе, каково было в то время положение в науке. В физике шла тогда величайшая революция, вызванная удивительными открытиями конца позапрошлого века и начала прошлого. Одно за другим следовали блестящие открытия, в свете которых материя представлялась иной, чем рисовалось ученым еще так недавно. Тогда были открыты лучи Рентгена (1895), радиоактивность (Веккерель, 1896), электрон (Томсон, 1897), радий (супруги Кюри, 1899), создана теория радиоактивного распада атомов (Резерфорд и Содли, 1902). Электрон предстал не только как мельчайшая частица отрицательного электричества, но и как общая составная часть всех атомов, как кирпичик всех атомных построек. С этого момента идея неизменного, неделимого атома, идея вечных, не превращающихся друг в друга химических элементов, которая много веков господствовала в умах ученых, внезапно рухнула, причем окончательно и бесповоротно.

Одновременно начались открытия в области световых явлений. В 1900 году были сделаны два замечательных открытия в оптике. Планк открыл дискретный (атомистический) характер излучения и ввел понятие действия; Лебедев измерил (а значит, экспериментально открыл) давление света. Отсюда логически следовало, что свет должен обладать массой.

Спустя еще несколько лет (в 1905 году) Эйнштейн создал теорию относительности (ее специальный принцип) и вывел из нее фундаментальный закон современной физики — закон взаимосвязи массы и энергии. Одновременно он выдвинул понятие фотона (или «атома света»).

Рубеж XIX и XX веков был периодом глубочайшей ломки старых физических понятий. Рушилась вся старая, по сути дела, механистическая, картина мира. Ломались не только понятия атома и элемента, но и понятия массы и энергии, вещества и света, пространства и времени, движения и действия. На место понятия неизменной массы, не зависящей от скорости движения тела, пришло понятие массы, меняющейся по своей величине в зависимости от того, с какой скоростью движется тело. На место понятия непрерывного движения и действия пришло представление об их дискретном, квантовом характере. Если энергетические явления математически описывались раньше непрерывными функциями, то теперь пришлось вводить для их описания прерывисто меняющиеся величины.

Пространство и время выступили не как внешние по отношению к материи, к движению и друг к другу формы бытия, а как зависимые и от них и друг от друга. Вещество и свет, разделенные ранее абсолютной перегородкой, обнаружили общность своих свойств (наличие массы, хотя качественно и различной) и своего строения (дискретный, зернистый характер).

Но не только крушением устаревших представлений характеризовалось то время: на руинах старых принципов, подвергшихся всеобщему разгрому (по выражению Л. Пуанкаре) стали уже то тут, то там возводиться первые теоретические постройки, но они еще не были охвачены общим планом, не были сведены в общий архитектурный ансамбль научных представлений.

«От атома отошли», значит, перестали по-старому считать атом пределом познания, последней частицей материи, дальше которой двигаться нельзя, некуда. «До электрона не дошли», значит, еще не создали нового представления о строении атома из электронов (включая и представление о положительном заряде в атоме).

Создание новой электронной теории строения материи стало центральной задачей физиков. Для решения этой задачи необходимо было ответить, прежде всего, на следующие четыре вопроса.

Первый вопрос. Как распределен или где сосредоточен внутри атома положительный электрический заряд? Одни физики полагали, что он равномерно распределен по всему атому, другие считали, что он находится в центре атома, словно «нейтральное светило» миниатюрной , которую, по их предположению, представляет собой атом.

Второй вопрос. Как ведут себя электроны внутри атома? Одни ученые думали, что электроны наглухо закреплены в атоме, как бы вкраплены в него, и образуют статическую систему, другие же, напротив, допускали, что электроны с огромной скоростью движутся внутри атома по определенным орбитам.

Третий вопрос. Сколько электронов может быть в атоме того или иного химического элемента? На этот вопрос не давалось даже предположительного ответа.

Четвертый вопрос. Как распределяются электроны внутри атома: слоями или и виде хаотического роя? На этот вопрос нельзя было дать никакого ответа, по крайней мере, до тех пор, пока оставалось неустановленным общее число электронов в атоме.

Ответ на первый вопрос был получен в 1911 году. Бомбардируя атомы положительно заряженными альфа-частицами, Резерфорд установил, что альфа-частицы свободно пронизывали атом во всех направлениях и на всех его участках, кроме центра. Близ центра частицы явно отклонялись от прямолинейного пути, как если бы они испытывали отталкивающее воздействие, исходящее из центра атома. Когда же частицы оказывались направленными прямо в центр атома, они отскакивали назад, как если бы в центре находилось чрезвычайно прочное, твердое зернышко. Это свидетельствовало о том, что положительный заряд атома действительно сосредоточен в ядре атома, равно как и почти вся масса атома. Резерфорд вычислил на основании полученных им опытных данных, что по своим размерам ядро атома в сто тысяч раз меньше самого атома. (Диаметр атома около 10 см, диаметр ядра около 10-13 см.)

Но если это так, то электроны не могут находиться в неподвижном состоянии внутри атома: их там ничто не может закрепить на одном месте. Напротив, они должны двигаться вокруг ядра, подобно тому как планеты движутся вокруг Солнца.

Так намечался ответ на второй вопрос. Однако окончательный ответ на него удалось добыть не сразу. Дело в том, что, согласно представлениям классической электродинамики, электрически заряженное тело, двигающееся в электромагнитном поле, должно непрерывно терять свою энергию. В результате этого электрон должен был постепенно приближаться к ядру и наконец, пасть на него. На деле же ничего подобного не происходит, атом ведет себя как вполне устойчивая система.

Не зная, как решить возникшую перед ними трудность, физики не могли дать определенного ответа на второй вопрос. Но пока продолжались поиски ответа па второй вопрос, неожиданно пришел ответ на третий.

…В конце XIX века многим ученым казалось, что ответ на вопрос о том, каково же строение материи, даст периодический закон химических элементов. Так думал и сам Д. И. Менделеев. Физические открытия, сделанные на рубеже XIX и XX веков, казалось бы, никак не были связаны с этим законом и стояли от него особняком.

В итоге сложились как бы две самостоятельные, изолированные друг от друга линии научного развития: одна - старая, начавшаяся еще в 1869 году (когда был открыт периодический закон) и продолжавшаяся в XX веке (это была, так сказать, химическая линия), другая - новая, возникшая в 1895 году, когда началась «новейшая революция в естествознании» (физическая линия).

Не связанность обеих линий научного развития усугублялась еще и тем, что многие химики представляли себе периодическую систему Менделеева как трактующую о неизменности химических элементов. Новая же физика, наоборот, исходила целиком из представлений о превращающихся и разрушающихся элементах.

Грандиозный бросок естествознания вперед стал возможным, прежде всего, благодаря тому, что две линии научного развития - «химическая» (идущая от периодического закона) и «физическая» (идущая от рентгеновых лучей, радиоактивности, электрона и кванта) - слились, взаимно обогатив друг друга.

В 1912 году в лаборатории Резерфорда появился молодой физик Мозли. Он выдвинул свою собственную тему, которую Резерфорд горячо одобрял. Мозли хотел выяснить зависимость между местом элементов (речь шла о ) в периодической системе Менделеева и характеристическим рентгеновским спектром того же элемента. Здесь была гениальна сама идея, сам замысел задуманной работы связать периодический закон с экспериментальными данными рентгеновского анализа. Как это нередко бывает в науке, правильная постановка проблемы дала сразу же ключ к ее решению.

В 1913 году Мозли нашей решение проблемы. Из математически обработанных Данных рентгеновского спектра того или иного химического элемента при помощи несложных операций он выводил некоторое целое число, специфичное для каждого элемента. Перенумеровав все элементы по порядку их расположения в периодической системе, Мозли увидел, что найденное из экспериментальных данных число N равняется порядковому номеру элемента в системе Менделеева. Это был решающий шаг к тому, чтобы ответить на третий вопрос.

В самом деле. Каков физический смысл числа N? Почти одновременно несколько физиков ответили так: «Число N указывает величину положительного заряда атомного ядра (Z), а значит, и число электронов в оболочке нейтрального атома данного элемента». Такой ответ дали Нильс Вор, Мозли и голландский физик ван ден Брук.

Таким образом, начался прямой штурм одной из важнейших крепостей природы, еще не завоеванной к тому времени человеческим разумом, - электронного строения атома. Успех этого штурма обеспечивался начавшимся союзом идей химиков и физиков, своеобразным взаимодействием различных «родов войск».

В то время как Мозли открывал закон, носящий теперь его имя, сильная поддержка отряду науки, штурмующему вышеназванную крепость, пришла со стороны ученых, изучавших радиоактивные явления. В этой области были сделаны три важных открытия.

Во-первых, были установлены различные типы радиоактивного распада: альфа-распад, при котором из ядра вылетают альфа- частицы - ядра гелия: бета-распад (из ядра вылетают электроны) и гамма-распад (ядро испускает жесткое электромагнитное излучение). Во-вторых, оказалось, что существуют три различных радиоактивных ряда: , тория и актиния. В-третьих, было обнаружено, что при разных атомных весах некоторые члены одного ряда оказываются химически неотличимыми и неотделимыми от членов другого ряда.

Все эти явления требовали объяснения, и оно было дано в том же знаменательном 1913 году. Но об этом уже читайте в нашей следующей статье.

P. S. О чем еще говорят британские ученые: о том, что для лучшего понимания многих физических открытий было бы здорово почитать труды ученых-первооткрывателей в оригинале – на английском языке. Для этого, пожалуй, не стоит пренебрегать такими вещами как английский для детей в Истре , ведь язык нужно учить смолоду, тем более если собираетесь в будущем читать на нем серьезные научные труды.

Во время своих экспериментов Галилео обнаружил, что тяжелые предметы падают быстрее легких из-за меньшего воздушного сопротивления: воздух мешает легкому объекту сильнее, чем тяжелому.

Решение Галилея проверить закон Аристотеля стало поворотным моментом в науке, оно ознаменовало начало проверки всех общепринятых законов опытным путем. Опыты Галилея с падающими телами привели к нашему начальному пониманию ускорения под действием гравитации.

Всемирное тяготение

Говорят, что однажды Ньютон сидел под яблоней в саду и отдыхал. Вдруг он увидел, как с ветки упало яблоко. Этот простой инцидент заставил его задуматься, почему яблоко упало вниз, в то время, как Луна все время оставалась в небе. Именно в этот момент в мозгу молодого Ньютона свершилось открытие: он понял, что на яблоко и Луну действует единая сила гравитации.


Ньютон представил себе, что на весь фруктовый сад действовала сила, которая притягивала к себе ветки и яблоки. Его более важно то, что он распространил эту силу до самой Луны. Ньютон понял, что сила притяжения есть везде, до него никто до этого не додумывался.

Согласно этому закону, гравитация влияет на все тела во Вселенной, включая яблоки, луны и планеты. Сила притяжения такого крупного тела, как Луна, может провоцировать такие явления, как приливы и отливы океанов на Земле.

Вода в той части океана, которая находится ближе к Луне, испытывает большее притяжение, поэтому Луна, можно сказать, перетягивает воду из одной части океана в другую. А так, как Земля вращается в противоположном направлении, эта задержанная Луной вода оказывается дальше привычных берегов.

Понимание Ньютоном того, что у каждого предмета есть собственная сила притяжения, стало великим научным открытием. Однако, его дело было еще не завершено.

Законы движения

Возьмем, например хоккей. Бьете клюшкой по шайбе, и она скользит по льду. Это первый закон: под действием силы предмет движется. Если бы не было трения о лед, то шайба скользила бы бесконечно долго. Когда вы бьете клюшкой по шайбе, то придаете ей ускорение.

Второй закон гласит: ускорение прямо пропорционально приложенной силе и обратно пропорционально массе тела.

А согласно третьему закону при ударе шайба действует на клюшку с такой же силой, как клюшка на шайбу, т.е. сила действия равна силе противодействия.

Законы движения Ньютона были смелым решением объяснять механику функционирования Вселенной, они стали основой классической физики.

Второй закон термодинамики

Наука о термодинамике – это наука о тепле, которая преобразуется в механическую энергию. От нее зависела вся техника во время промышленной революции.

Тепловая энергия может быть преобразована в энергию движения, например, путем вращения коленчатого вала или турбины. Важнее всего выполнить как можно больше работы, используя как можно меньше топлива. Это наиболее экономически выгодно, поэтому люди стали изучать принципы работы паровых двигателей.


Среди тех, кто занимался этим вопросом, был немецкий ученый . В 1865 году он сформулировал Второй закон термодинамики . Согласно этому закону, при любом энергетическом обмене, например, во время нагревания воды в паровом котле, часть энергии пропадает. Клаузиус ввел в оборот слово энтропия , объясняя с его помощью ограниченную эффективность паровых двигателей. Часть тепловой энергии теряется во время преобразования в механическую.

Это утверждение изменило наше понимание того, как функционирует энергия. Не существует теплового двигателя, который был бы эффективен на 100%. Когда вы едете на машине, только 20% энергии бензина действительно тратится на движение. Куда девается остальная часть? На нагревание воздуха, асфальта и шин. Цилиндры в блоке цилиндров нагреваются и изнашиваются, а детали ржавеют. Грустно думать о том, насколько расточительны такие механизмы.

Хотя Второй закон термодинамики был основой промышленной революции, следующее великое открытие привело мир в новое, его современное состояние.

Электромагнетизм


Ученые научились создавать магнитную силу с помощью электричества, когда пустили ток по завитому проводу. В результате получился электромагнит. Как только подается ток, возникает магнитное поле. Нет напряжения – нет поля.

Электрогенератор в своей самой простейшей форме является витком проволоки между полюсами магнита. Майкл Фарадей обнаружил, что когда магнит и проволока находятся на близком расстоянии, по проволоке проходит ток. По этому принципу работают все электрогенераторы.

Фарадей вел записи о своих экспериментах, но шифровал их. Тем не менее они были по достоинству оценены физикомДжеймсом Клерком Максвеллом , который использовал их, чтобы еще лучше понять принципы электромагнетизма . Максвелл позволил человечеству понять, как электричество распределяется по поверхности проводника.

Если вы хотите знать, каким был бы мир без открытий Фарадея и Максвелла, то представьте себе, что электричество не существует: не было бы радио, телевидения, мобильных телефонов, спутников, компьютеров и всех средств связи. Представьте себе, что вы в 19 веке, потому что без электричества вы бы именно там и оказались.

Совершая открытия, Фарадей и Максвелл не могли знать, что их труд вдохновил одного юношу на раскрытие тайн света и на поиск его связи с величайшей силой Вселенной. Этим юношей был Альберт Эйнштейн.

Теория относительности

Эйнштейн однажды сказал, что все теории нужно объяснять детям. Если они не поймут объяснения, то значит теория бессмысленна. Будучи ребенком, Эйнштейн однажды прочитал детскую книжку об электричестве, тогда оно только появлялось, и простой телеграф казался чудом. Эта книжка была написана неким Бернштейном, в ней он предлагал читателю представить себя едущим внутри провода вместе с сигналом. Можно сказать, что тогда в голове Эйнштейна и зародилась его революционная теория.


В юношестве, вдохновленный своим впечатлением от той книги, Эйнштейн представлял себе, как он двигается вместе с лучом света. Он обдумывал эту мысль 10 лет, включая в размышления понятие света, времени и пространства.

В мире, который описывал Ньютон, время и пространство были отделены друг от друга: когда на Земле 10 часов утра, то такое же время было и на Венере, и на Юпитере, и по всей Вселенной. Время было тем, что никогда не отклонялось и не останавливалось. Но Эйнштейн по-другому воспринимал время.

Время – это река, которая извивается вокруг звезд, замедляясь и ускоряясь. А если пространство и время могут изменяться, то меняются и наши представления об атомах, телах и вообще о Вселенной!

Эйнштейн демонстрировал свою теорию с помощью так называемых мыслительных экспериментов. Самый известный из них – это «парадокс близнецов» . Итак, у нас есть двое близнецов, один из которых улетает в космос на ракете. Так как она летит почти со скоростью света, время внутри нее замедляется. После возвращения этого близнеца на Землю оказывается, что он моложе того, кто остался на планете. Итак, время в разных частях Вселенной идет по-разному. Это зависит от скорости: чем быстрее вы движетесь, тем медленнее для вас идет время.

Этот эксперимент в какой-то степени проводится с космонавтами на орбите. Если человек находится в открытом космосе, то время для него идет медленней. На космической станции время идет медленней. Этот феномен затрагивает и спутники. Возьмем, например, спутники GPS: они показывают ваше положение на планете с точностью до нескольких метров. Спутники движутся вокруг Земли со скоростью 29000 км/ч, поэтому к ним применимы постулаты теории относительности. Это нужно учитывать, ведь если в космосе часы идут медленнее, то синхронизация с земным временем собьется и система GPS не будет работать.

E=mc 2

Вероятно, это самая известная в мире формула. В теории относительности Эйнштейн доказал, что при достижении скорости света условия для тела меняются невообразимым образом: время замедляется, пространство сокращается, а масса растет. Чем выше скорость, тем больше масса тела. Только подумайте, энергия движения делает вас тяжелее. Масса зависит от скорости и энергии. Эйнштейн представил себе, как фонарик испускает луч света. Точно известно, сколько энергии выходит из фонарика. При этом он показал, что фонарик стал легче, т.е. он стал легче, когда начал испускать свет. Значит E – энергия фонарика зависит от m – массы в пропорции, равной c 2 . Все просто.

Эта формула показывала и на то, что в маленьком предмете может быть заключена огромная энергия. Представьте себе, что вам бросают бейсбольный мяч и вы его ловите. Чем сильнее его бросят, тем большей энергией он будет обладать.

Теперь что касается состояния покоя. Когда Эйнштейн выводил свои формулы, он обнаружил, что даже в состоянии покоя тело обладает энергией. Посчитав это значение по формуле, вы увидите, что энергия поистине огромна.

Открытие Эйнштейна было огромным научным скачком. Это был первый взор на мощь атома. Не успели ученые полностью осознать это открытие, как случилось следующее, которое вновь повергло всех в шок.

Квантовая теория

Квантовый скачок – самый малый возможный скачок в природе, при этом его открытие стало величайшим прорывом научной мысли.

Субатомные частицы, например, электроны, могут передвигаться из одной точку в другую, не занимая пространство между ними. В нашем макромире это невозможно, но на уровне атома – это закон.

Квантовая теория появилась в самом начале 20 века, когда случился кризис в классической физике. Было открыто множество феноменов, которые противоречили законам Ньютона. Мадам Кюри , например, открыла радий, который сам по себе светится в темноте, энергия бралась из ниоткуда, что противоречило закону сохранения энергии. В 1900 году люди считали, что энергия непрерывна, и что электричество и магнетизм можно было бесконечно делить на абсолютно любые части. А великий физик Макс Планк дерзко заявил, что энергия существует в определенных объемах – квантах .


Если представить себе, что свет существует только в этих объемах, то становятся понятны многие феномены даже на уровне атома. Энергия выделяется последовательно и в определенном количестве, это называется квантовым эффектом и означает, что энергия волнообразна.

Тогда думали, что Вселенная была создана совсем по-другому. Атом представлялся чем-то, напоминающим шар для боулинга. А как может шар иметь волновые свойства?

В 1925 году австрийский физик , наконец, составил волновое уравнение, которое описывало движение электронов. Внезапно стало возможным заглянуть внутрь атома. Получается, что атомы одновременно являются и волнами, и частицами, но при этом непостоянными.

Можно ли вычислить возможность того, что человек разделится на атомы, а потом материализуется по другую сторону стены? Звучит абсурдно. Как можно, проснувшись утром, оказаться на Марсе? Как можно пойти спать, а проснуться на Юпитере? Это невозможно, но вероятность этого подсчитать вполне реально. Данная вероятность очень низка. Чтобы это случилось, человеку нужно было бы пережить Вселенную, а вот у электронов это случается постоянно.

Все современные «чудеса» вроде лазерных лучей и микрочипов работают на основании того, что электрон может находиться сразу в двух местах. Как это возможно? Не знаешь, где точно находится объект. Это стало таким трудным препятствием, что даже Эйнштейн бросил заниматься квантовой теорией, он сказал, что не верит, что Господь играет во Вселенной в кости.

Несмотря на всю странность и неопределенность, квантовая теория остается пока что лучшим нашим представлением о субатомном мире.

Природа света

Древние задавались вопросом: из чего состоит Вселенная? Они считали, что она состоит из земли, воды, огня и воздуха. Но если это так, то что же такое свет? Его нельзя поместить в сосуд, нельзя дотронуться до него, почувствовать, он бесформенный, но присутствует везде вокруг нас. Он одновременно везде и нигде. Все видели свет, но не знали, что это такое.

Физики пытались ответить на этот вопрос на протяжении тысячи лет. над поиском природы света работали величайшие умы, начиная с Исаака Ньютона. Сам Ньютон использовал солнечный свет, разделенный призмой, чтобы показать все цвета радуги в одном луче. Это значило, что белый свет состоит из лучей всех цветов радуги.


Ньютон показал, что красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый цвета могут быть объединены в белый свет. Это привело его к мысли, что свет делится на частицы, которые он назвал корпускулами. Так появилась первая световая теория – корпускулярная.

Представьте себе морские волны: любой человек знает, что когда одна из волн сталкивается с другой под определенным углом, обе волны смешиваются. Юнг проделал то же самое со светом. Он сделал так, чтобы свет от двух источников пересекался, и место пересечения было отчетливо видно.

Итак, тогда было все две световые теории: корпускулярная у Ньютона и волновая у Юнга . И тогда за дело взялся Эйнштейн, который сказал, что возможно, обе теории имеют смысл. Ньютон показал, что у света есть свойства частиц, а Юнг доказал, что свет может иметь волновые свойства. Все это – две стороны одного и того же. Возьмем, например, слона: если вы возьмете его за хобот, то подумаете, что это змея, а если обхватите его ногу, то вам покажется, что это дерево, но на самом деле слон обладает качествами и того, и другого. Эйнштейн ввел понятие дуализма света , т.е. наличия у света свойств как частиц, так и волн.

Чтобы увидеть свет таким, каким мы знает его сегодня, потребовалась работа трех гениев на протяжении трех веков. Без их открытий мы, возможно, до сих пор жили бы в раннем Средневековье.

Нейтрон

Атом так мал, что его трудно себе представить. В одну песчинку помещается 72 квинтиллиона атомов. Открытие атома привело к другому открытию.


О существовании атома люди знали уже 100 лет назад. Они думали, что электроны и протоны равномерно распределены в нем. Это назвали моделью типа «пудинг с изюмом», потому что считалось, что электроны были распределены внутри атома как изюм внутри пудинга.

В начале 20 века провел эксперимент с целью еще лучше исследовать структуру атома. Он направлял на золотую фольгу радиоактивные альфа-частицы. Он хотел узнать, что произойдет, когда альфа-частицы ударятся о золото. Ничего особенного ученый не ожидал, так как думал, что большинство альфа-частиц пройдут сквозь золото, не отражаясь и не изменяя направление.

Однако, результат был неожиданным. По его словам, это было то же самое, что выстрелить 380-мм снарядом по куску материи, и при этом снаряд отскочил бы от нее. Некоторые альфа-частицы сразу отскочили от золотой фольги. Это могло произойти, только если бы внутри атома было небольшое количество плотного вещества, оно не распределено как изюм в пудинге. Резерфорд назвал это небольшое количество вещества ядром .

Чедвик провел эксперимент, который показал, что ядро состоит из протонов и нейтронов. Для этого он использовал очень умный метод распознавания. Для перехвата частиц, которые выходили из радиоактивного процесса, Чедвик применял твердый парафин.

Сверхпроводники

Лаборатория Ферми обладает одним из крупнейших в мире ускорителем частиц. Это 7-километровое подземное кольцо, в котором субатомные частицы ускоряются почти до скорости света, а затем сталкиваются. Это стало возможным только после того, как появились сверхпроводники .

Сверхпроводники были открыты примерно в 1909 году. Голландский физик по имени стал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры – растет она или падает.


Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называетсясверхпроводимостью .

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача – найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля – это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее. С разработкой ускорителей, которые могли сталкивать субатомные частицы на скорости света, человек узнал о существовании десятков других частиц, на которые разбивались атомы. Физики стали называть все это «зоопарком частиц».

Американский физик Мюррей Гелл-Ман заметил закономерность в ряде новооткрытых частиц «зоопарка». Он делил частицы по группам в соответствии с обычными характеристиками. По ходу он изолировал мельчайшие компоненты ядра атома, из которых состоят сами протоны и нейтроны.

Открытые Гелл-Маном кварки были для субатомных частиц тем же, чем была периодическая таблица для химических элементов. За свое открытие в 1969 году Мюррею Гелл-Ману была присуждена Нобелевская премия в области физики. Его классификация мельчайших материальных частиц упорядочила весь их «зоопарк».

Хотя Гелл-Маном был уверен в существовании кварков, он не думал, что кто-то сможет их в действительности обнаружить. Первым подтверждением правильности его теорий были удачные эксперименты его коллег, проведенные на Стэнфордском линейном ускорителе. В нем электроны отделялись от протонов, и делался макроснимок протона. Оказалось, что в нем было три кварка .

Ядерные силы

Наше стремление найти ответы на все вопросы о Вселенной привело человека как внутрь атомов и кварков, так и за пределы галактики. Данное открытие – результат работы многих людей на протяжении столетий.

После открытий Исаака Ньютона и Майкла Фарадея ученые считали, что у природы две основные силы: гравитация и электромагнетизм. Но в 20 веке были открыты еще две силы, объединенные одним понятием – атомная энергия. Таким образом, природных сил стало четыре.

Каждая сила действует в определенном спектре. Гравитация не дает нам улететь в космос со скоростью 1500 км/ч. Затем у нас есть электромагнитные силы – это свет, радио, телевидение и т.д. кроме этого существую еще две силы, поле действия которых сильно ограничено: есть ядерное притяжение, которое не дает ядру распасться, и есть ядерная энергия, которая излучает радиоактивность и заражает все подряд, а также, кстати, нагревает центр Земли, именно благодаря ей центр нашей планеты не остывает вот уже несколько миллиардов лет – это действие пассивной радиации, которая переходи в тепло.

Как обнаружить пассивную радиацию? Это возможно благодаря счетчикам Гейгера . Частицы, которые высвобождаются, когда расщепляется атом, попадают в другие атомы, в результате чего создается небольшой электроразряд, который можно измерить. При его обнаружении счетчик Гейгера щелкает.

Как же измерить ядерное притяжение? Тут дело обстоит труднее, потому что именно эта сила не дает атому распасться. Здесь нам нужен расщепитель атома. Нужно буквально разбить атом на осколки, кто-то сравнил этот процесс со сбросом пианино с лестницы с целью разобраться в принципах его работы, слушая звуки, которые пианино издает, ударяясь о ступеньки. (weak force, слабое взаимодействие) и ядерная энергия (strong force, сильное взаимодействие). Последние две называются квантовыми силами, их описание можно объединить в нечто под названием стандартной модели. Возможно, это самая уродливая теория в истории науки, но она действительно возможна на субатомном уровне. Теория стандартной модели претендует на то, чтобы стать высшей, но от этого она не перестает быть уродливой. С другой стороны, у нас есть гравитация – великолепная, прекрасная система, она красива до слез – физики буквально плачут, видя формулы Эйнштейна. Они стремятся объединить все силы природы в одну теорию и назвать ее «теория всего». Она объединила бы все четыре силы в одну суперсилу, которая существует с начала времен.

Неизвестно, сможем ли мы когда-нибудь открыть суперсилу, которая включала бы в себя все четыре основные силы Природы и сможем ли создать физическую теорию Всего. Но одно известно точно: каждое открытие ведет к новым исследованиям, а люди – самый любопытный вид на планете – никогда не перестанут стремиться понимать, искать и открывать.